题目传送门

题意:有若干线段,问是否存在一条直线,所有线段投影到直线上时至少有一个公共点

分析:有一个很好的解题报告:二维平面上线段与直线位置关系的判定。首先原问题可以转换为是否存在一条直线与所有线段相交,然后可以离散化枚举通过枚举端点来枚举直线,再用叉积判断直线和线段是否相交。用到了叉积

/************************************************
* Author :Running_Time
* Created Time :2015/10/23 星期五 17:00:08
* File Name :POJ_3304.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e2 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-8;
struct Point { //点的定义
double x, y;
Point (double x=0, double y=0) : x (x), y (y) {}
};
typedef Point Vector; //向量的定义
Point read_point(void) { //点的读入
double x, y;
scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double polar_angle(Vector A) { //向量极角
return atan2 (A.y, A.x);
}
double dot(Vector A, Vector B) { //向量点积
return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B) { //向量叉积
return A.x * B.y - A.y * B.x;
}
int dcmp(double x) { //三态函数,减少精度问题
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
Vector operator + (Vector A, Vector B) { //向量加法
return Vector (A.x + B.x, A.y + B.y);
}
Vector operator - (Vector A, Vector B) { //向量减法
return Vector (A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p) { //向量乘以标量
return Vector (A.x * p, A.y * p);
}
Vector operator / (Vector A, double p) { //向量除以标量
return Vector (A.x / p, A.y / p);
}
bool operator < (const Point &a, const Point &b) { //点的坐标排序
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
bool operator == (const Point &a, const Point &b) { //判断同一个点
return dcmp (a.x - b.x) == 0 && dcmp (a.y - b.y) == 0;
}
double length(Vector A) { //向量长度,点积
return sqrt (dot (A, A));
}
double angle(Vector A, Vector B) { //向量转角,逆时针,点积
return acos (dot (A, B) / length (A) / length (B));
}
double area_triangle(Point a, Point b, Point c) { //三角形面积,叉积
return fabs (cross (b - a, c - a)) / 2.0;
}
Vector rotate(Vector A, double rad) { //向量旋转,逆时针
return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A) { //向量的单位法向量
double len = length (A);
return Vector (-A.y / len, A.x / len);
}
Point point_inter(Point p, Vector V, Point q, Vector W) { //两直线交点,参数方程
Vector U = p - q;
double t = cross (W, U) / cross (V, W);
return p + V * t;
}
double dis_to_line(Point p, Point a, Point b) { //点到直线的距离,两点式
Vector V1 = b - a, V2 = p - a;
return fabs (cross (V1, V2)) / length (V1);
}
double dis_to_seg(Point p, Point a, Point b) { //点到线段的距离,两点式 if (a == b) return length (p - a);
Vector V1 = b - a, V2 = p - a, V3 = p - b;
if (dcmp (dot (V1, V2)) < 0) return length (V2);
else if (dcmp (dot (V1, V3)) > 0) return length (V3);
else return fabs (cross (V1, V2)) / length (V1);
}
Point point_proj(Point p, Point a, Point b) { //点在直线上的投影,两点式
Vector V = b - a;
return a + V * (dot (V, p - a) / dot (V, V));
}
bool inter(Point a1, Point a2, Point b1, Point b2) { //判断线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool on_seg(Point p, Point a1, Point a2) { //判断点在线段上,两点式
return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
}
double area_poly(Point *p, int n) { //多边形面积
double ret = 0;
for (int i=1; i<n-1; ++i) {
ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
}
return ret / 2;
}
/*
点集凸包,输入点集会被修改
*/
vector<Point> convex_hull(vector<Point> &P) {
sort (P.begin (), P.end ());
P.erase (unique (P.begin (), P.end ()), P.end ()); //预处理,删除重复点
int n = P.size (), m = 0;
vector<Point> ret (n + 1);
for (int i=0; i<n; ++i) {
while (m > 1 && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--;
ret[m++] = P[i];
}
int k = m;
for (int i=n-2; i>=0; --i) {
while (m > k && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--;
ret[m++] = P[i];
}
if (n > 1) m--;
ret.resize (m);
return ret;
}
struct Line {
Point s, e;
Line () {}
Line (Point s, Point e) : s (s), e (e) {}
};
Line L[N];
int n; bool judge(Point a, Point b) {
if (a == b) return false;
for (int i=0; i<n; ++i) {
if (cross (a - L[i].s, b - L[i].s) * cross (a - L[i].e, b - L[i].e) > 0) return false;
}
return true;
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d", &n);
for (int i=0; i<n; ++i) {
L[i] = Line (read_point (), read_point ());
}
if (n == 1) {
puts ("Yes!"); continue;
}
bool flag = false;
for (int i=0; i<n && !flag; ++i) {
for (int j=i+1; j<n; ++j) {
if (judge (L[i].s, L[j].s) || judge (L[i].s, L[j].e)
|| judge (L[i].e, L[j].s) || judge (L[i].e, L[j].e)) {
flag = true; break;
}
}
}
if (flag) puts ("Yes!");
else puts ("No!");
} return 0;
}

  

简单几何(线段与直线的位置) POJ 3304 Segments的更多相关文章

  1. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  2. POJ 3304 Segments(计算几何:直线与线段相交)

    POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...

  3. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  4. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

  5. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  6. poj 3304 Segments (题意理解出错,错误的只枚举了过线段的直线)

    //枚举过每一条线段的直线, //再判断其他线段的点在直线上或被直线穿过 //即求直线与线段相交(叉积) #include<stdio.h> #include<math.h> ...

  7. POJ 3304 Segments 基础线段交判断

    LINK 题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点 思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交.判断 ...

  8. POJ 3304 Segments --枚举,几何

    题意: 给n条线段,问有没有一条直线,是每条线段到这条直线上的投影有一个公共点. 解法: 有公共点说明有一条这条直线的垂线过所有线段,要找一条直线过所有线段,等价于从所有线段中任选两端点形成的直线存在 ...

  9. POJ 3304 Segments【叉积】

    题意:有n条线段,问有没有一条直线使得所有线段在这条直线上的投影至少有一个共同点. 思路:逆向思维,很明显这个问题可以转化为是否有一条直线穿过所有线段,若有,问题要求的直线与该直线垂直,并且公共点为垂 ...

随机推荐

  1. Android Toast 封装,避免Toast消息覆盖,替换系统Toast最好用的封装

    Android Toast 封装,避免Toast消息覆盖,无阻塞,等强大功能   ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...

  2. 百度图片爬虫-python版

               self.browser=imitate_browser.BrowserBase()            self.chance=0            self.chanc ...

  3. nyoj19 全排列

    http://acm.nyist.net/JudgeOnline/status.php?pid=19 #include<stdio.h> #include<stdlib.h> ...

  4. 2模02day1题解

    源文件在我的网盘上.链接:http://pan.baidu.com/s/1qWPUDRm 密码:k52e (只有机智的人才能看到我的链接) 机智的双重下划线~~~ T1 T1就是一个递推,这题目把我恶 ...

  5. 查看daemon使用技巧

    una ~ # ps -ef|egrep "*d$"或"[a-z]d"               //查看现有的服务器上都有哪些服务器进程.root 3509 ...

  6. windows添加和删除服务

    删除系统服务,记得一定要小心用.避免删错sc delete 服务名 加入服务: sc create 服务名 binPath= 路径 start= auto

  7. 【JAVA、C++】LeetCode 022 Generate Parentheses

    Given n pairs of parentheses, write a function to generate all combinations of well-formed parenthes ...

  8. 到天宫做客-最后一分钟AC!!!

    问题 C: 到天宫做客 时间限制: 1 Sec  内存限制: 128 MB提交: 100  解决: 26[提交][状态][讨论版] 题目描述 有一天,我做了个梦,梦见我很荣幸的接到了猪八戒的邀请,到天 ...

  9. JavaScript设计模式 - 代理模式

    代理模式是为一个对象提供一个代用品或占位符,以便控制对它的访问 代理模式的用处(个人理解):为了保障当前对象的单一职责(相对独立性),而需要创建另一个对象来处理调用当前对象之前的一些逻辑以提高代码的效 ...

  10. Java虚拟机支持的最大内存限制

    最近在开发Java的程序.本来我是一直很喜欢Java的内存管理的,不需要担心分配内存,只管分配,垃圾收集器自己会给你回收内存的.现在开发的程序数据量很大,为了速度快,我准备把所有的信息加载进内存,这样 ...