BZOJ3735 : [Pa2013]Konduktorzy
二分一个最大的位置$x$,计算$t=\sum_{i=1}^k\lfloor\frac{x}{a_i}\rfloor$。
如果$t\leq n$,那么说明就算全部检票员都走到了这里,也不够$n$个指令,所以可以先将所有检票员尽量向$x$位置走,并将用掉的指令数扣除。
然后将$x$适当往前调整,使得每个检票员还差至少一步。
因为$a_i$互不相同,并且$a_i\leq 100000$,所以剩余指令数并不多,用堆直接模拟即可。
时间复杂度$O(k\log^2k)$。
#include<cstdio>
#include<algorithm>
#include<queue>
#define N 100010
using namespace std;
typedef long long ll;
typedef pair<ll,int> P;
int n,i,a[N];ll m,L,R,mid,fin,now,ans[N];priority_queue<P,vector<P>,greater<P> >Q;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
bool check(ll x){
ll t=m;
for(int i=1;i<=n;i++){
t-=x/a[i];
if(t<0)return 0;
}
return 1;
}
int main(){
scanf("%lld",&m);read(n);
for(i=1;i<=n;i++){
read(a[i]);
if(a[i]>R)R=a[i];
}
L=R+1,R*=m;
while(L<=R)if(check(mid=(L+R)>>1))L=(fin=mid)+1;else R=mid-1;
for(R=fin,i=1;i<=n;i++)R=min(R,max((fin/a[i]-1)*a[i],0LL));
for(i=1;i<=n;i++)now+=R/a[i],Q.push(P(R/a[i]*a[i],i));
while(now<m){
P t=Q.top();Q.pop();
ans[t.second]=++now;
t.first+=a[t.second];
Q.push(t);
}
for(i=1;i<n;i++)printf("%lld ",ans[i]);printf("%lld",ans[n]);
return 0;
}
BZOJ3735 : [Pa2013]Konduktorzy的更多相关文章
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 【BZOJ3733】[Pa2013]Iloczyn (搜索)
[BZOJ3733][Pa2013]Iloczyn (搜索) 题面 BZOJ 题解 把约数筛出来之后,直接爆搜,再随便剪枝就过了. 最近一句话题解倾向比较严重 #include<iostream ...
- 【BZOJ3837】[Pa2013]Filary 随机化神题
[BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...
- 【BZOJ3837】[PA2013]Filary
[BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...
- 【BZOJ】3737: [Pa2013]Euler
题意: 求满足\(phi(a)=n\)的\(a\)的个数.(\(n \le 10^{10}\)) 分析 这种题一开始就感觉是搜索= = 题解 首先容易得到 \[\phi(n) = \prod_{i} ...
- BZOJ 3736: [Pa2013]Karty
Description 一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大. Sol DP/悬线法. 首先,所求的矩阵一定可以覆盖所有贴边的悬线. 用悬线法 ...
- BZOJ3733 : [Pa2013]Iloczyn
首先将$n$的约数从小到大排序,设$dfs(x,y,z)$表示当前可以选第$x$个到第$m$个约数,还要选$y$个,之前选的乘积为$z$是否可能. 爆搜的时候,如果从$x$开始最小的$y$个相乘也超过 ...
- BZOJ3839 : [Pa2013]Działka
对于每个询问,首先可以通过扫描线+线段树求出四个方向的第一个点,询问范围等价于框住这些点的最小矩形. 对于一个点$i$,预处理出: $A[i][j]$:$i$往左下角按凸壳走到$j$时,凸壳上相邻两点 ...
- BZOJ3838 : [Pa2013]Raper
将选取的$A$看成左括号,$B$看成右括号,那么答案是一个合法的括号序列. 那么只要重复取出$k$对价值最小的左右括号,保证每时每刻都是一个合法的括号序列即可. 将$($看成$1$,$)$看成$-1$ ...
随机推荐
- [Unity3D]引擎崩溃、异常、警告、BUG与提示总结及解决方法
1.U3D经常莫名奇妙崩溃. 一般是由于空异常造成的,多多检查自己的引用是否空指针. 2.编码切换警告提示. 警告提示:Some are Mac OS X (UNIX) and some ...
- HTML5 自制本地网页视频播放器
HTML5初试:本地视频用网页打开啦半个广告都可以没有,看来暴风什么的快要淘汰了. 视频格式还是有要求的,看来要备一个转码器. 格式 IE Firefox Opera Chrome Safari Og ...
- Centos6.7安装Apache2.4+Mysql5.6+Apache2.4
首先说下思路,因为一开始系统上已经跑了一套完成的 PHP 环境,那时候都是快速自动安装的,如果是跑一些5.3以下版本的话,很简单,几个指令,10分钟搞定了. 但现在要升级,彻底一点的话,唯有推倒重来了 ...
- Lucas的数论(math)
Lucas的数论(math) 题目描述 去年的今日,Lucas仍然是一个热爱数学的孩子.(现在已经变成业界毒瘤了> <) 在整理以前的试题时,他发现了这么一道题目:求\(\sum\limi ...
- 1-2+3-4+5-6+7......+n的几种实现
本文的内容本身来自一个名校计算机生的一次面试经历,呵呵,没错,你猜对了,肯定 不是我 个人很喜欢这两道题,可能题目原本不止两道,当然,我这里这分析我很喜欢的两道. 1.写一个函数计算当参数为n(n很大 ...
- VirtualBox共享文件夹等高级特性
转自: http://blog.csdn.net/longerzone/article/details/32119457 http://www.oschina.net/translate/10-vir ...
- 基础知识《四》---Java多线程学习总结
本文转载自51cto 一.线程的基本概念简单的说:线程就是一个程序里不同的执行路径,在同一个时间点上cpu只会有一个线程在执行,Java里的多线程是通过java.lang.Thread类来实现的,每个 ...
- css排版
先介绍如何设定字体.颜色.大小.段落空白等比较简单的应用,后面再介绍下比如首字下沉.首行缩进.最后讲一些常用的web页面中文排版,比如中文字的截断.固定宽度词内折行(word-wrap和word-br ...
- Java读写文件的几种方式
自工作以后好久没有整理Java的基础知识了.趁有时间,整理一下Java文件操作的几种方式.无论哪种编程语言,文件读写操作时避免不了的一件事情,Java也不例外.Java读写文件一般是通过字节.字符和行 ...
- BestCoder11(Div2) 1003 Boring count (hdu 5056) 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5056 题目意思:给出一条只有小写字母组成的序列S,问当中可以组成多少条每个字母出现的次数 <= ...