Concat层解析
Concat层的作用就是将两个及以上的特征图按照在channel或num维度上进行拼接,并没有eltwise层的运算操作,举个例子,如果说是在channel维度上进行拼接conv_9和deconv_9的话,首先除了channel维度可以不一样,其余维度必须一致(也就是num、H、W一致),这时候所做的操作仅仅是conv_9 的channel k1加上deconv_9的channel k2,Concat 层输出的blob可表示为:N*(k1+k2)*H*W。通常情况下,考虑到Concat是希望将同大小的特征图拼接起来,那为什么会产生同大小的特征图呢?显然离不开上采样和下采样的操作,接下来,以Caffe为例,介绍一下这两种拼接的方式,如下:
- 选择axis=0,表示在num维度上进行拼接,可表示为:(k1+k2)*C*H*W;
- 选择axis=1,表示在channel维度上进行拼接,可表示为:N*(k1+k2)*H*W。
注意,卷积运算是三维的(不要想成二维的,当然这应该在学卷积的时候说过的),卷积核的数量就是feature map的channel,feature map的num通常是minibatch的数目。可问题是,这两种Concat的方式应该如何选择呢?(ps:如果自己不会用,很自然就是看看别人怎么用)
那么接下来我们就看看到底怎么用。
目前我见过的大都是在channel维度上进行拼接,其实也容易想到,因为我们说feature map 的num是minibatch的图片数目,比方我们的batch是32,但是我们有4张显卡同时训练,显然minibatch等于8,这个8表示的是每张显卡一次性处理的图片数目,这么说来,如果在num维度上拼接的意思就是将同一张显卡处理的feature map数目重复的加倍了,当然由于上下采样并不是严格的互逆运算,所以在重复的特征图上像素值还是存在差异。反之,如果是在channel 维度上拼接,此时channel 的数量增加了,也就是说同一个大小的特征图有了更多的特征表示,很多论文都已经证实其可以提高检测性能,但是如果不是cancat的方式,而是增加原有的卷积层的channel数目会导致显存占用增加,速度下降,这样一来concat的方式在不失速度的前提下,提高了精度,这也是其主要的贡献。当然光说不行,我把这两种方法都试验一下,供大家参考。
在试验之前介绍一下我的环境,我采用的是VGG模型加的改进,训练中用了4个TITAN X,minibatch等于8,在保证其它情况一致的情况下进行如下试验:
- 在num维度上进行拼接;显然,在num维度上拼接的话,concat层输出的num个数就变成16了,如下表统计的结果显示,此种操作的效果很差,出现missing GT position for label的warning,不建议使用。
- 在channel维度上进行拼接,在channel维度上的拼接分成无BN层和有BN层。
(1)无BN层:直接将deconvolution layer 和convolution layer concat。实验结果表明,该方式取得的结果精度较低,低于原有的VGG模型,分析主要的原因是漏检非常严重,原因应该是concat连接的两层参数不在同一个层级,类似BN层用在eltwise层上。
(2)有BN层:在deconvolution layer 和convolution layer 后面加batchnorm和scale层(BN)后再concat。实验结果表明,该方式取得了比原有VGG模型更好的检测效果(表中的迭代次数还没有完哦),增加了2%的精度,但是速度上慢了一些。
总结:concat层多用于利用不同尺度特征图的语义信息,将其以增加channel的方式实现较好的性能,但往往应该在BN之后再concat才会发挥它的作用,而在num维度的拼接较多使用在多任务问题上,将在后续的博客中介绍,总之concat层被广泛运用在工程研究中。
Concat层解析的更多相关文章
- slice层解析
如果说之前的Concat是将多个bottom合并成一个top的话,那么这篇博客的slice层则完全相反,是把一个bottom分解成多个top,这带来了一个问题,为什么要这么做呢?为什么要把一个低层的切 ...
- Eltwise层解析
Concat层虽然利用到了上下文的语义信息,但仅仅是将其拼接起来,之所以能起到效果,在于它在不增加算法复杂度的情形下增加了channel数目.那有没有直接关联上下文的语义信息呢?答案是Eltwise层 ...
- json两层解析
public class Demo { public static void main(String[] args) { try { // 创建连接 服务器的连接地址 URL url = new UR ...
- Caffe_Scale层解析
Caffe Scale层解析 前段时间做了caffe的batchnormalization层的解析,由于整体的BN层实现在Caffe是分段实现的,因此今天抽时间总结下Scale层次,也会后续两个层做合 ...
- ASP.NET SignalR2持久连接层解析
越是到年底越是感觉浑身无力,看着啥也不想动,只期盼着年终奖的到来以此来给自己打一针强心剂.估摸着大多数人都跟我一样犯着这样浑身无力的病,感觉今年算是没挣到啥钱,但是话也不能这么说,搞得好像去年挣到钱了 ...
- Euclideanloss_layer层解析
这里说一下euclidean_loss_layer.cpp关于该欧式loss层的解析,代码如下: #include <vector> #include "caffe/layers ...
- Spring的Service层与Dao层解析
本文转载于网络,觉得写得很透彻. dao完成连接数据库修改删除添加等的实现细节,例如sql语句是怎么写的,怎么把对象放入数据库的.service层是面向功能的,一个个功能模块比如说银行登记并完成一次存 ...
- Mybatis框架基础支持层——解析器模块(2)
解析器模块,核心类XPathParser /** * 封装了用于xml解析的类XPath.Document和EntityResolver */ public class XPathParser { / ...
- TCP协议详解7层和4层解析(美团,阿里) 尤其是三次握手,四次挥手 具体发送的报文和状态都要掌握
如果想了解HTTP的协议结构,原理,post,get的区别(阿里面试题目),请参考:HTTP协议 结构,get post 区别(阿里面试) 这里有个大白话的解说,可以参考:TCP/IP协议三次握手和四 ...
随机推荐
- java传统的文件拷贝 相当于两个大缸需要通过一个勺子(字节数组)一点一点运过去
- Codeforces 1060 F. Shrinking Tree
题目链接 一道思维好题啊...感觉这种类型的题很检验基本功是否扎实(像我这样的就挂了). 题意:你有一棵\(n\)个点的树,每次随机选择一条边,将这条边的两个端点合并,并随机继承两个点标号中的一个,问 ...
- HotSpot垃圾收集器GC的种类
堆内存的结构:
- [BZOJ2288&BZOJ1150]一类堆+链表+贪心问题
今天我们来介绍一系列比较经典的堆+链表问题.这类问题的特点是用堆选取最优解,并且通过一些加减操作来实现"反悔". 在看题之前,我们先来介绍一个神器:手写堆. 手写堆的一大好处就是可 ...
- 【转】vi编辑只读文档无法保存的解决办法
vi编辑只读文档无法保存的解决办法 使用普通用户编辑nginx.conf 等配置文件: 保存的时 候会提示:没有Root Permission 可以用如下方法解决:保存时加上::w !sudo tee ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- [USACO18OPEN]Talent Show
题目描述 Farmer John要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第iii头奶牛重量为wi,才艺水平为ti,两者都是整数. 在到达时,Farmer J ...
- 洛谷P4382 劈配
不知道这个Zayid是谁... 题意: 有n个人,m个导师.每个导师能接纳bi个人,每个人对于这m个导师都有一个志愿档次. 优先满足靠前的人,问到最后每个人匹配的导师是他的第几志愿. 每个人又有一个限 ...
- centos6.5搭建LVS+Keepalived
1.配置LVS负载调度器 (1)为eth0配置IP地址,为eth0:0配置VIP地址. vi /etc/sysconfig/network-scripts/ifcfg-eth0 …… DEVICE=e ...
- PHP_EOL 写入字符串换行 , php获取毫秒 microtime
private function miclog($t1,$t2,$name){ $lasttime = ($t2 - $t1).'ms'; $content = date('Y-m-d H:i:s', ...