【APIO 2018】铁人两项(圆方树)
题意大概是,求有多少三元组$(s,c,f)(s \neq c, c \neq f, s \neq f)$,满足从$s$到$f$有一条简单路径经过$c$。
得到结论:
- 点双中任意互不相同的三个点,必定存在一条简单路径依次经过这三个点。
- 显然,割点只能经过一次。
建出一棵圆方树,圆点的权值为$-1$,方点的权值为该点双中点的个数,那任意两个圆点之间可以作为它们中转点的个数就是它们在圆方树上路径的点权和。
具体来讲就是割点上只能经过一次,圆点设成$-1$是为了去重方便。
以前只写过点双缩树,这里写圆方树更方便,权且将这道题作为学习的例题吧。
建圆方树只要在Tarjan上稍作修改,这里给出建树的例子:
void Tarjan(int x, int fa) {
sta[++top] = x; in[x] = -;
dfn[x] = low[x] = ++_clock;
for (int i = las[x]; i; i = pre[i]) {
if (to[i] == fa) continue;
if (dfn[to[i]]) {
low[x] = std::min(low[x], dfn[to[i]]);
} else {
Tarjan(to[i], x);
low[x] = std::min(low[x], low[to[i]]);
if (dfn[x] <= low[to[i]]) {
xtr[x].push_back(++c_n); ++in[c_n];
for (int t = -; t != to[i]; ) {
t = sta[top--];
xtr[c_n].push_back(t); ++in[c_n];
}
}
}
}
}
(注:xtr为圆方树,in < 0代表圆点,否则代表了该方点中点双里点的个数)
之后这个题就好做了,统计的是所有圆点点对间路径长度的总和。
#include <cstdio>
#include <vector>
#include <iostream> typedef long long LL;
const int N = ; int n, m;
int dfn[N], low[N], in[N], siz[N], sta[N], top, _clock, c_n;
std::vector<int> xtr[N];
LL ans, sum[N]; int yun = , las[N], to[N << ], pre[N << ];
inline void Add(int a, int b) {
to[++yun] = b; pre[yun] = las[a]; las[a] = yun;
} void Tarjan(int x, int fa) {
sta[++top] = x; in[x] = -;
dfn[x] = low[x] = ++_clock;
for (int i = las[x]; i; i = pre[i]) {
if (to[i] == fa) continue;
if (dfn[to[i]]) {
low[x] = std::min(low[x], dfn[to[i]]);
} else {
Tarjan(to[i], x);
low[x] = std::min(low[x], low[to[i]]);
if (dfn[x] <= low[to[i]]) {
xtr[x].push_back(++c_n); ++in[c_n];
for (int t = -; t != to[i]; ) {
t = sta[top--];
xtr[c_n].push_back(t); ++in[c_n];
}
}
}
}
} void Dfs(int x) {
if (in[x] < ) siz[x] = , sum[x] = in[x];
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
Dfs(v);
siz[x] += siz[v];
sum[x] += (LL) siz[v] * in[x] + sum[v];
}
}
void Calc(int x) {
if (in[x] < ) ans += sum[x] - in[x];
LL cnt = ;
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
ans += (LL) sum[v] * (siz[x] - (in[x] < ) - siz[v]);
cnt += (LL) siz[v] * (siz[x] - (in[x] < ) - siz[v]);
}
ans += (LL) cnt / * in[x];
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
Calc(v);
}
} int main() {
scanf("%d%d", &n, &m);
c_n = n;
for (int i = , x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
Add(x, y); Add(y, x);
}
for (int i = ; i <= n; ++i) {
if (!dfn[i]) {
Tarjan(i, );
Dfs(i);
Calc(i);
}
}
printf("%lld\n", ans * ); return ;
}
$\bigodot$技巧&套路:
- 圆方树的构建,圆方树上的统计技巧,可以用圆点的权值设成$-1$来去重。
【APIO 2018】铁人两项(圆方树)的更多相关文章
- [APIO2018] Duathlon 铁人两项 圆方树,DP
[APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- 洛谷P4630 铁人两项--圆方树
一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...
- 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)
Description 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...
- LOJ 2587 「APIO2018」铁人两项——圆方树
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...
- loj2587 「APIO2018」铁人两项[圆方树+树形DP]
主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...
- [BZOJ5463][APIO2018]铁人两项(圆方树DP)
题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...
- 解题:APIO 2018 铁人两项
题面 建立圆方树,考虑所有路径,发现路径上原来的点双(现在的方点)里的点都可以做中间点.但是路径上被方点夹着的圆点被计重了,要扣掉:枚举的两个端点也被算进去了,要扣掉.所以直接将方点权值设为点双大小, ...
随机推荐
- GlusterFS分布式存储集群-2. 使用
参考文档: Quick Start Guide:http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/ Instal ...
- BugPhobia开发篇章:Alaph阶段Scurm Meeting
[github] https://github.com/bugphobia/XuebaOnline 0x01 :目录与摘要 If you weeped for the missing sunset ...
- 实验1:java开发环境的熟悉
一.实验内容 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 3.实现四则运算并进行测试. 二.实验知识点 1. JVM.JRE.JDK的安装 ...
- 敏捷开发与XP实践
北京电子科技学院(BESTI) 实 验 报 告 课程: Java 班级:1352 姓名:黄伟业 学号:20135215 成绩: ...
- C++第一次作业
Github地址点这里
- android--实现通过点击链接打开apk(应用图标在桌面消失)
首先在AndroidManifest.xml的MAIN Activity下追加以下内容.(启动Activity时给予) ※必须添加项 <intent-filter> <action ...
- week3c:个人博客作业
程序测试: 一个基本的测试. 在Visual Studio 2013 中使用C++单元测试 操作如下: 这是我学到的过程. 有复杂程序的测试.以后有时间再弄.
- Keil C51与Keil ARM共存
转自:http://blog.chinaunix.net/uid-20734916-id-3988537.html Keil和MDK共存,按照以下步骤:1 先安装 Keil C51,安装目录改为:&q ...
- 模拟alert,confirm 阻塞状态
/*** * 模拟alert弹窗 * content 为弹框显示的内容 * 确定按钮对应的下面取消关闭显示框 * **/function oAlert(content) { var oWrap = $ ...
- systemct管理服务命令
systemctl管理服务的启动,重启,停止,重载,查看状态的命令 Systcinit命令(红帽RHEL6系统) Systemctl命令(红帽RHEL7系统) 作用 service foo star ...