【APIO 2018】铁人两项(圆方树)
题意大概是,求有多少三元组$(s,c,f)(s \neq c, c \neq f, s \neq f)$,满足从$s$到$f$有一条简单路径经过$c$。
得到结论:
- 点双中任意互不相同的三个点,必定存在一条简单路径依次经过这三个点。
- 显然,割点只能经过一次。
建出一棵圆方树,圆点的权值为$-1$,方点的权值为该点双中点的个数,那任意两个圆点之间可以作为它们中转点的个数就是它们在圆方树上路径的点权和。
具体来讲就是割点上只能经过一次,圆点设成$-1$是为了去重方便。
以前只写过点双缩树,这里写圆方树更方便,权且将这道题作为学习的例题吧。
建圆方树只要在Tarjan上稍作修改,这里给出建树的例子:
void Tarjan(int x, int fa) {
sta[++top] = x; in[x] = -;
dfn[x] = low[x] = ++_clock;
for (int i = las[x]; i; i = pre[i]) {
if (to[i] == fa) continue;
if (dfn[to[i]]) {
low[x] = std::min(low[x], dfn[to[i]]);
} else {
Tarjan(to[i], x);
low[x] = std::min(low[x], low[to[i]]);
if (dfn[x] <= low[to[i]]) {
xtr[x].push_back(++c_n); ++in[c_n];
for (int t = -; t != to[i]; ) {
t = sta[top--];
xtr[c_n].push_back(t); ++in[c_n];
}
}
}
}
}
(注:xtr为圆方树,in < 0代表圆点,否则代表了该方点中点双里点的个数)
之后这个题就好做了,统计的是所有圆点点对间路径长度的总和。
#include <cstdio>
#include <vector>
#include <iostream> typedef long long LL;
const int N = ; int n, m;
int dfn[N], low[N], in[N], siz[N], sta[N], top, _clock, c_n;
std::vector<int> xtr[N];
LL ans, sum[N]; int yun = , las[N], to[N << ], pre[N << ];
inline void Add(int a, int b) {
to[++yun] = b; pre[yun] = las[a]; las[a] = yun;
} void Tarjan(int x, int fa) {
sta[++top] = x; in[x] = -;
dfn[x] = low[x] = ++_clock;
for (int i = las[x]; i; i = pre[i]) {
if (to[i] == fa) continue;
if (dfn[to[i]]) {
low[x] = std::min(low[x], dfn[to[i]]);
} else {
Tarjan(to[i], x);
low[x] = std::min(low[x], low[to[i]]);
if (dfn[x] <= low[to[i]]) {
xtr[x].push_back(++c_n); ++in[c_n];
for (int t = -; t != to[i]; ) {
t = sta[top--];
xtr[c_n].push_back(t); ++in[c_n];
}
}
}
}
} void Dfs(int x) {
if (in[x] < ) siz[x] = , sum[x] = in[x];
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
Dfs(v);
siz[x] += siz[v];
sum[x] += (LL) siz[v] * in[x] + sum[v];
}
}
void Calc(int x) {
if (in[x] < ) ans += sum[x] - in[x];
LL cnt = ;
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
ans += (LL) sum[v] * (siz[x] - (in[x] < ) - siz[v]);
cnt += (LL) siz[v] * (siz[x] - (in[x] < ) - siz[v]);
}
ans += (LL) cnt / * in[x];
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
Calc(v);
}
} int main() {
scanf("%d%d", &n, &m);
c_n = n;
for (int i = , x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
Add(x, y); Add(y, x);
}
for (int i = ; i <= n; ++i) {
if (!dfn[i]) {
Tarjan(i, );
Dfs(i);
Calc(i);
}
}
printf("%lld\n", ans * ); return ;
}
$\bigodot$技巧&套路:
- 圆方树的构建,圆方树上的统计技巧,可以用圆点的权值设成$-1$来去重。
【APIO 2018】铁人两项(圆方树)的更多相关文章
- [APIO2018] Duathlon 铁人两项 圆方树,DP
[APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- 洛谷P4630 铁人两项--圆方树
一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...
- 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)
Description 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...
- LOJ 2587 「APIO2018」铁人两项——圆方树
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...
- loj2587 「APIO2018」铁人两项[圆方树+树形DP]
主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...
- [BZOJ5463][APIO2018]铁人两项(圆方树DP)
题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...
- 解题:APIO 2018 铁人两项
题面 建立圆方树,考虑所有路径,发现路径上原来的点双(现在的方点)里的点都可以做中间点.但是路径上被方点夹着的圆点被计重了,要扣掉:枚举的两个端点也被算进去了,要扣掉.所以直接将方点权值设为点双大小, ...
随机推荐
- Siki_Unity_3-3_背包系统
Unity 3-3 背包系统(基于UGUI) 任务1&2&3:演示.介绍.类图分析 背包面板.箱子面板.锻造合成面板.装备佩戴面板.商店面板等 面板的显示和隐藏.保存和加载.拾起物品. ...
- mysql 优化之 doublewrite buffer 机制
是什么? doublewrite buffer是mysql 系统表空间的一块存储区域. 有什么用? 在Innodb将数据页写到数据存储文件之前,存储从Innodb缓存池刷过来的数据页.且只有将数写入d ...
- FFM原理及公式推导
原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun 上一篇讲了FM(Factorization Machines),说一说FFM ...
- ADO.net中DataTable的应用
一.思维导图 二.知识点描述 (1)构造函数 DataTable() 不带参数初始化DataTable类的新实例 DataTable(string tableName) 用指定的表名初始化DataT ...
- [转载] Ubuntu 12.04下安装git,SSH及出现的Permission denied解决办法
如何安装ssh http://os.51cto.com/art/201109/291634.htm 仅需要阅读至成功开启ssh服务即可 http://www.linuxidc.com/Linux/20 ...
- SQL 查一年内的数据
--查询今年的 select * from 表 where datediff(yy,时间字段,GETDATE())=0 --查询去年的 select * from 表 where datediff(y ...
- Ubuntu登录界面添加root用户登录选项
1.普通用户登录系统并打开终端 配置root密码 $sudo passwd 切换至root用户 $su root 输入密码 修改以下配置文件 $nano /usr/share/lightdm/ligh ...
- 复杂PC问题——信号量与共享存储区
#include <stdio.h> #include <unistd.h> #include <sys/ipc.h> #include <sys/sem.h ...
- win10频繁提示证书即将过期怎么办
最近几天每次开机都会提示许可证即将过期 ”Windows+R”打开“运行”窗口,输入“slmgr.vbs -xpr”并点击“确定”,弹出的窗口确实显示过期时间在本月1.29过期 百度各种激活方法后,发 ...
- 字符串拆分函数 func_splitstr
create type str_split is table of varchar2(4000) ; 1 CREATE OR REPLACE FUNCTION splitstr(p_string IN ...