【uoj125】 NOI2013—书法家
http://uoj.ac/problem/125 (题目链接)
题意
在网格上写“NOI”,每个格子上有一些权值,要求覆盖的权值最大。书写有一些规则。
Solution
将“NOI”分成11个部分,每个部分都是有几个有相同特点的矩形构成的,按列dp前缀最大值优化一下即可。看起来很难码的样子,其实套路都差不多,但是想清楚,一些细节处理到位,平时习惯好一点就可以很快写完辣。
${f[p][i][j][k]}$表示第${p}$个部分,正在dp第${i}$列,矩形上边界为${j}$,下边界为${k}$时,最大权值。
${mx[p][i][j][k]}$表示的是第${p}$个部分,第${i}$列,与上边界${j}$,下边界${k}$相关的前缀最大值。
其实比较恶心的就是第二部分,你需要处理出这样的一个前缀最大值:上边界的区间在${[1,j]}$,下边界的区间在${[j+1,k]}$。这个并不好直接求出来,所以我们把它分成两部分:上边界区间在${[1,j]}$,下边界固定在${j+1}$;以及上边界在${[1,j]}$,下边界在${[j,k]}$。这样就非常好处理了。
第${i}$列那一维再滚动一下就好了。
细节
初始化什么的。然后${j,k}$按照它们的意义${for}$过去可能会清晰一些吧。
代码
// uoj125
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=160,maxm=510;
int a[maxn][maxm],s[maxm][maxn],up[maxn];
int f[12][maxn][maxn],g[12][maxn][maxn],mx[12][maxn][maxn];
int n,m; int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) scanf("%d",&a[i][j]);
for (int j=1;j<=m;j++)
for (int i=1;i<=n;i++) s[j][i]=s[j][i-1]+a[i][j];
for (int i=0;i<=11;i++)
for (int j=0;j<=n+1;j++)
for (int k=0;k<=n+1;k++) f[i][j][k]=g[i][j][k]=mx[i][j][k]=-inf;
for (int i=0;i<=n+1;i++) up[i]=-inf;
int ans=-inf;
for (int i=1;i<=m;i++) {
//第1部分
for (int j=1;j<=n;j++)
for (int k=j;k<=n;k++)
f[1][j][k]=max(g[1][j][k],0)+s[i][k]-s[i][j-1];
//第2部分
for (int j=1;j<=n;j++)
for (int k=n;k>=j;k--) mx[1][j][k]=max(g[1][j][k],mx[1][j][k+1]);
for (int k=1;k<=n;k++) {
up[k]=-inf;
for (int j=1;j<=k;j++) up[k]=max(up[k],g[2][j][k]);
}
for (int k=1;k<=n;k++)
for (int j=1;j<=k;j++) mx[2][j][k]=max(mx[2][j-1][k],g[2][j][k]);
for (int j=1;j<=n;j++)
for (int k=j;k<=n;k++) mx[2][j][k]=max(mx[2][j][k-1],mx[2][j][k]);
for (int j=1;j<=n;j++)
for (int k=j;k<=n;k++)
f[2][j][k]=max(up[j-1],max(mx[1][j][k+1],mx[2][j][k]))+s[i][k]-s[i][j-1];
//第3部分
for (int k=1;k<=n;k++)
for (int j=k;j>=1;j--) mx[2][j][k]=max(mx[2][j+1][k],g[2][j][k]);
for (int j=1;j<=n;j++)
for (int k=j;k<=n;k++)
f[3][j][k]=max(g[3][j][k],mx[2][j+1][k])+s[i][k]-s[i][j-1];
//第4部分
f[4][0][0]=g[4][0][0];
for (int j=1;j<=n;j++)
for (int k=j;k<=n;k++) f[4][0][0]=max(f[4][0][0],g[3][j][k]);
//第5部分
for (int j=1;j<=n;j++)
for (int k=j+2;k<=n;k++) f[5][j][k]=g[4][0][0]+s[i][k]-s[i][j-1];
//第6部分
for (int j=1;j<=n;j++)
for (int k=j+2;k<=n;k++) f[6][j][k]=max(g[5][j][k],g[6][j][k])+s[i][j]-s[i][j-1]+s[i][k]-s[i][k-1];
//第7部分
for (int j=1;j<=n;j++)
for (int k=j+2;k<=n;k++) f[7][j][k]=g[6][j][k]+s[i][k]-s[i][j-1];
//第8部分
f[8][0][0]=g[8][0][0];
for (int j=1;j<=n;j++)
for (int k=j+2;k<=n;k++) f[8][0][0]=max(f[8][0][0],g[7][j][k]);
//第9部分
for (int j=1;j<=n;j++)
for (int k=j+2;k<=n;k++) f[9][j][k]=max(g[9][j][k],g[8][0][0])+s[i][j]-s[i][j-1]+s[i][k]-s[i][k-1];
//第10部分
for (int j=1;j<=n;j++)
for (int k=j+2;k<=n;k++) f[10][j][k]=max(g[10][j][k],g[9][j][k])+s[i][k]-s[i][j-1];
//第11部分
for (int j=1;j<=n;j++)
for (int k=j+2;k<=n;k++) {
f[11][j][k]=max(g[10][j][k],g[11][j][k])+s[i][j]-s[i][j-1]+s[i][k]-s[i][k-1];
ans=max(ans,f[11][j][k]);
}
//滚动
for (int j=1;j<=11;j++)
for (int k=0;k<=n;k++)
for (int l=0;l<=n;l++) g[j][k][l]=f[j][k][l];
}
printf("%d\n",ans);
return 0;
}
【uoj125】 NOI2013—书法家的更多相关文章
- BZOJ3241/UOJ125 [Noi2013]书法家
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- [Noi2013]书法家
来自FallDream的博客,未经允许,请勿转载,谢谢. 小E同学非常喜欢书法,他听说NOI2013已经开始了,想题一幅“NOI”的字送给大家. 小E有一张非常神奇的纸,纸可以用一个n 行m 列的二维 ...
- BZOJ 3241: [Noi2013]书法家
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3241 题意: 思路:把每个字母分成三部分,两个字母之间还有空的列,所以我一共设了11个状态 ...
- P1398 [NOI2013]书法家
传送门 就是个普及组 $dp$ 合集,把 $NOI$ 从左到右拆成 $9$ 个部分,每个部分都可以分别 $dp$ 除了 $N$ 的中间部分比较恶心以外其他都还好,自己推一下然后就知道转移,就 $N$ ...
- luogu P1398 [NOI2013]书法家
传送门 注意到\(N\ O\ I\)三个字母都可以从左到右拆成三部分,即\(N=\)一个矩形+一堆矩形+一个矩形,\(O=\)一条+两条横的+一条,\(I=\)两条横的+一个矩形+两条横的,所以可以拆 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- NOI2013 Day2
NOI2013 Day2 矩阵游戏 题目描述:设矩阵\(F\) 求\(F[n][m](mod (10^9+7))\) solution: 这题可以求通项解决. 设\(X_i=F[i][m]\), \( ...
- bzoj 3242: [Noi2013]快餐店 章鱼图
3242: [Noi2013]快餐店 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 266 Solved: 140[Submit][Status] ...
- bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 613 Solved: 256[Submit][Status] ...
随机推荐
- k8s踩坑记第1篇--rc无法创建
六一快乐!!! 什么是k8s,我不想解释,百度资料有很多,本系列只踩坑,不科普. 问题描述: 做Hello World的例子,结果get pods一直显示没有资源? 应用配置代码: apiVersio ...
- PytorchZerotoAll学习笔记(一)
Pytorch的安装请参考torch的官方文档,传送门:https://pytorch.org/get-started/locally/ Numpy的复习 如果你之前没有学过Numpy的话,建议去看看 ...
- FileZilla-FTP连接失败
状态: 已登录状态: 读取“/”的目录列表...命令: CWD /响应: 250 CWD successful. "/" is current directory.命令: TYPE ...
- Java面试中的Spring方面问题
1.一般问题 1.1. 不同版本的 Spring Framework 有哪些主要功能? VersionFeatureSpring 2.5发布于 2007 年.这是第一个支持注解的版本.Spring 3 ...
- [cmake] Basic Tutorial
Basic Project The most basic porject is an executable built from source code file. CMakeLists.txt cm ...
- 前端_JavaScript
目录 JavaScript的基础 引入方式 JS的变量.常量和标识符 JS的数据类型 运算符 流程控制 JavaScript的对象 String对象 Array对象 Date对象 Math对象 Fun ...
- Redis学习(一):CentOS下redis安装和部署
1.基础知识 redis是用C语言开发的一个开源的高性能键值对(key-value)数据库.它通过提供多种键值数据类型来适应不同场景下的存储需求,目前为止redis支持的键值数据类型如下字符串.列表 ...
- Java程序设计基础项目总结报告
Java程序设计基础项目总结报告 20135313吴子怡 一.项目内容 运用所学Java知识,不调用Java类库,实现密码学相关算法的设计,并完成TDD测试,设计运行界面. 二.具体任务 1.要求实现 ...
- C++:构造函数2——拷贝构造函数
前言:拷贝构造函数是C++中的重点之一,在这里对其知识进行一个简单的总结. 一.什么是拷贝构造函数 在C++中,对于内置类型的变量来说,在其创建的过程中用同类型的另一个变量来初始化它是完全可以的,如 ...
- install4j 工具为java程序打包exe
用 install4j 工具为java程序打包exe 制作人:mark 制作时间:2013-05-02 用Eclipse 将程序源码打包成jar文件. 打包jar方法我不做介绍了,相信大家都会,不会的 ...