Toy Storage

Time Limit: 1000MS Memory Limit: 65536K

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore.

Reza’s parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top:



We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating “Box” on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0

20 20

80 80

60 60

40 40

5 10

15 10

95 10

25 10

65 10

75 10

35 10

45 10

55 10

85 10

5 6 0 10 60 0

4 3

15 30

3 1

6 8

10 10

2 1

2 8

1 5

5 5

40 10

7 9

0

Sample Output

Box

2: 5

Box

1: 4

2: 1

Source

Tehran 2003 Preliminary

这道题就是POJ2318的变体,也是一道简单计算几何,代码基本上也差不多,但本蒟蒻重敲的时候调一个小细节调了很久,其实这个问题还是so" role="presentation" style="position: relative;">soso easy" role="presentation" style="position: relative;">easyeasy的。注意到这道题的纸板没有顺序(本蒟蒻被坑的第一个点),然后请各位每次输入点时不要用while(m−−)" role="presentation" style="position: relative;">while(m−−)while(m−−)(本蒟蒻被坑的第二个点)。其他就没啥了,就一个二分答案+叉积判断就没了。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
struct pot{int x,y;};
struct line{pot a,b;}l[1005];
int n,m,x1,x2,y1,y2,cnt[1005],tot[1005];
inline pot operator-(pot a,pot b){return pot{a.x-b.x,a.y-b.y};}
inline int cross(pot a,pot b){return a.x*b.y-a.y*b.x;}
inline bool check(int k,pot p){return cross(l[k].b-p,l[k].a-p)<0;}
inline bool cmp(line a,line b){return a.a.x<b.a.x;}
inline int search(pot p){
    int l=1,r=n;
    while(l<=r){
        int mid=l+r>>1;
        if(check(mid,p))l=mid+1;
        else r=mid-1;
    }
    return r;
}
int main(){
    while(scanf("%d",&n)&&n){
        memset(cnt,0,sizeof(cnt));
        memset(tot,0,sizeof(tot));
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        for(int i=1;i<=n;++i){
            scanf("%d%d",&l[i].a.x,&l[i].b.x);
            l[i].a.y=y1,l[i].b.y=y2;
        }
        sort(l+1,l+n+1,cmp);
        for(int i=1;i<=m;++i){
            pot s;
            scanf("%d%d",&s.x,&s.y);
            ++cnt[search(s)];
        }
        puts("Box");
        for(int i=0;i<=n;++i)++tot[cnt[i]];
        for(int i=1;i<=m;++i)if(tot[i])printf("%d: %d\n",i,tot[i]);
    }
    return 0;
}

2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)的更多相关文章

  1. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

  2. POJ 2398 Toy Storage 二分+叉积

    Description Mom and dad have a problem: their child, Reza, never puts his toys away when he is finis ...

  3. 2018.07.03 POJ 2653 Pick-up sticks(简单计算几何)

    Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Description Stan has n sticks of various leng ...

  4. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  5. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  6. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  7. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  8. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  9. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

随机推荐

  1. shift 参数移位

    更改批处理文件中可替换参数的位置. SHIFT [/n] 如果命令扩展名被启用,SHIFT 命令支持/n 命令行开关:该命令行开关告诉命令从第 n 个参数开始移位:n 介于零和八之间.例如: SHIF ...

  2. 迭代器iter()

    from collections import Iterable print(isinstance({},iterable)) # 判断是否可迭代 from collections import It ...

  3. SpringMvc 获取ApplicationContext

    有时,我们不通过Controller层进入Service层,比如同步数据,任务,以及文件上传共通Handler对文件处理后保存数据等都会由一个非Controller类调用Service. 这时候如果n ...

  4. Simple2D-19(音乐播放器)播放器的源码实现

    使用 BASS 和 ImGui 实现音乐播放器 MusicPlayer. 将播放器和一个文件夹关联起来,程序刚开始运行的时候就从该文件夹加载所有音频文件.而文件夹的路径则保存在配置文件中,所以程序的第 ...

  5. UI5-文档-2-开发环境

    这一部分将指导您安装.配置和设置SAPUI5开发环境的最常见和推荐用例. 请注意:您可以在不同的平台上使用SAPUI5.各自平台的许可和维护条件也适用于SAPUI5.例如,如果在SAP云平台上使用SA ...

  6. X86汇编概要

    来自:https://www.cnblogs.com/jiftle/p/8453106.html 本文翻译自:http://www.cs.virginia.edu/~evans/cs216/guide ...

  7. LVS原理以及配置

    安装好ipvsadm后需要查看内核是否加载了ip_vs模块儿,如果没有需要手动执行ipvsadm进行加载: # ipvsadm # lsmod |grep ip_vs # rmmod ip_vs_rr ...

  8. Mysql binlog二进制日志

    Mysql binlog日志有三种格式,分别为Statement,MiXED,以及ROW! 1.Statement:每一条会修改数据的实际原sql语句都会被记录在binlog中. 优点:不需要记录每一 ...

  9. cobbler配置解析

    1.Cobbler命令说明: 命令名称 命令用途 cobbler check 检查cobbler配置 cobbler list 列出所有的cobbler元素 cobbler report 列出元素的详 ...

  10. 【Java】JVM(三)、Java垃圾收集器

    一.Minor GC.Major GC 和 Full GC Minor GC:清理新生代空间,当Eden空间不能分配时候引发Minor GC Major GC:清理老年代空间 Full GC:清理Ja ...