Noip前的大抱佛脚----一些思路
一些思路
Tags:Noip前的大抱佛脚
序列
- 线段树(当然还要有主席树啊!)
- 差分和前缀和啊
- 分块
- 莫队
- 看到等差数列先推一波式子啊(天天爱跑步)
- 有序序列的动态插入删除
有的时候需要算贡献,当你发现序列(离散化后)值域一定时,便可以尝试使用树状数组 - 维护\(mex\)
可以尝试使用值域分块,当这个块内全部有值了就打个\(tag\) - 等和序列
大概就是说可以多项式乘起来那种吧,可以发现差分之后是回文串! - 序列差分
异或序列可以差分!!(具体差分方法:遇到一个1,给当前位置和下一个位置异或上一个1,这样统计前缀和后就是原序列了)
函数问题
- 打表观察进制规律(如\(Kathy\)的函数)
网格图
封闭图形问题
- 横向维护网格前缀和,把网格交点看作点,每条边作为边,对于水平方向的边边权为0,对于水平方向的可以连两条边,一个表示这行要开始了,减去前缀和,一个表示这行结束了,加上前缀和。这样跑出的一个环正好代价为圈住的网格权值和
如圈地游戏的判正环的做法
黑白染色
如果黑白格互不影响或者有一些奇妙的性质,那么可以往这方面考虑
删除和询问
如果可以离线,可以尝试正序删转倒序加,有时问题就变得可做
乘法问题
如果加法更可做,考虑
- 取log
- 求原根
顺序问题
顺序对答案有影响,求答案的最值
通常这个只需要对两个元素考虑顺序,因为相邻两个有大小关系符合冒泡排序的要求,从而可以对整个序列排序
例题如:10.12天山折梅手、Noip国王游戏
最值问题
可以考虑从大往小做或者从小往大做,例如从小往大加边就是Kruscal重构树的过程
研究成果
名字取得太高大上了嗯只是平时的一些小想法
数论分块套数论分块的复杂度
数论分块得到\(\frac{n}{i}\)后再对其数论分块
\(Ans<n\sum_{i=1}^{\sqrt n}\sqrt\frac{1}{i}\)
又有公式\(\sum_{i=1}^{n}\frac{1}{\sqrt i}<2\sqrt n\)(先假设,然后用数学归纳法证明)
所以\(Ans<n^{\frac{3}{4}}\)即为其估计复杂度,实际上要小得多
Noip前的大抱佛脚----一些思路的更多相关文章
- Noip前的大抱佛脚----文章索引
Noip前的大抱佛脚----赛前任务 Noip前的大抱佛脚----考场配置 Noip前的大抱佛脚----数论 Noip前的大抱佛脚----图论 Noip前的大抱佛脚----动态规划 Noip前的大抱佛 ...
- Noip前的大抱佛脚----Noip真题复习
Noip前的大抱佛脚----Noip真题复习 Tags: Noip前的大抱佛脚 Noip2010 题目不难,但是三个半小时的话要写四道题还是需要码力,不过按照现在的实力应该不出意外可以AK的. 机器翻 ...
- Noip前的大抱佛脚----字符串
目录 字符串 经验 用FFT求解字符串匹配问题 两(多)串DP时状态合并 最长公共子序列转LIS 位运算最大值 挂链哈希 哈希处理回文串 树哈希 字符串模板库 KMP 最小循环表示 Mancher A ...
- Noip前的大抱佛脚----数论
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...
- Noip前的大抱佛脚----图论
目录 图论 知识点 二分图相关 DFS找环 并查集维护二分图 二分图匹配的不可行边 最小生成树相关 最短路树 最短路相关 负环 多源最短路 差分约束系统 01最短路 k短路 网络流 zkw费用流 做题 ...
- Noip前的大抱佛脚----数据结构
目录 数据结构 知识点及其应用 线段树 神奇标记 标记不下放 并查集 维护二分图 维护后继位置 堆 可并堆的可持久化 dsu on tree 方式&原理 适用范围 单调队列 尺取合法区间 模板 ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- Noip前的大抱佛脚----根号对数算法
根号算法 分块 数列分块入门九题(hzwer) 入门题1,2,3,4,5,7 问题:给一段区间打上标记后单点查询 解法:主要是每块维护一些标记,计算答案等,此类分块较为简单 注意:块大小一般为\(\s ...
- Noip前的大抱佛脚----奇技淫巧
STL函数 set set查找前驱后继 multiset<int>::iterator iter; S.insert(x); iter=S.find(x);//返回迭代器 iter--;/ ...
随机推荐
- wopihost
项目介绍 基于wopi协议开发的WopiHost, 支持word, excel,ppt(仅支持预览)等文档的预览和编辑. 运行环境 需要安装Office online 2016才可以使用,基于jdk ...
- Vue2学习笔记:数据交互vue-resource
基本语法 必须引入一个库:vue-resource github地址 // 基于全局Vue对象使用http Vue.http.get('/someUrl', [options]).then(succe ...
- [UI] 精美UI界面欣赏[3]
精美UI界面欣赏[3]
- 解决UITableView在iOS7中UINavigationController里的顶部留白问题
解决UITableView在iOS7中UINavigationController里的顶部留白问题 出现问题时候的截图: 源码: 用到的类: UIViewController+TitleTextAtt ...
- 使用UISearchDisplayController
使用UISearchDisplayController 虽然UISearchDisplayController名字中带有controller,可他不是一个UIView相关的controller,因为, ...
- zabbix之自动发现Tomcat多实例(第一种:已经部署完成,后续不再添加;第二种:后续或根据需要添加Tomcat实例)
单一实例手动部署:https://www.cnblogs.com/huangyanqi/p/8522526.html 注释:参考的一位博主的博客后续做的修改,那个博主的网址找不到了!!!! 背景: 1 ...
- 魅力python------if - else 语句
引入:if-else的作用,满足一个条件做什么,否则做什么. if-else语句语法结构 if 判断条件: 要执行的代码 else: 要执行的代码 判断条件:一般为关系表达式或bool类型的值 执行过 ...
- JS相关知识点总结
一.获取元素方法 1.document.getElementById("元素id号"); 可以使用内置对象document上的getElementById方法来获取页面上设置了id ...
- 解决django配合nginx部署后admin样式丢失
解决django配合nginx部署后admin样式丢失 1. 在项目的settings.py文件里添加以下内容: STATIC_URL = '/static/' STATICFILES_DIRS = ...
- Golang - 数据库操作
1. 下载安装包 go get github.com/Go-SQL-Driver/MySQL go install github.com/Go-SQL-Driver/MySQL 2. 连接池 This ...