Noip前的大抱佛脚----一些思路
一些思路
Tags:Noip前的大抱佛脚
序列
- 线段树(当然还要有主席树啊!)
- 差分和前缀和啊
- 分块
- 莫队
- 看到等差数列先推一波式子啊(天天爱跑步)
- 有序序列的动态插入删除
有的时候需要算贡献,当你发现序列(离散化后)值域一定时,便可以尝试使用树状数组 - 维护\(mex\)
可以尝试使用值域分块,当这个块内全部有值了就打个\(tag\) - 等和序列
大概就是说可以多项式乘起来那种吧,可以发现差分之后是回文串! - 序列差分
异或序列可以差分!!(具体差分方法:遇到一个1,给当前位置和下一个位置异或上一个1,这样统计前缀和后就是原序列了)
函数问题
- 打表观察进制规律(如\(Kathy\)的函数)
网格图
封闭图形问题
- 横向维护网格前缀和,把网格交点看作点,每条边作为边,对于水平方向的边边权为0,对于水平方向的可以连两条边,一个表示这行要开始了,减去前缀和,一个表示这行结束了,加上前缀和。这样跑出的一个环正好代价为圈住的网格权值和
如圈地游戏的判正环的做法
黑白染色
如果黑白格互不影响或者有一些奇妙的性质,那么可以往这方面考虑
删除和询问
如果可以离线,可以尝试正序删转倒序加,有时问题就变得可做
乘法问题
如果加法更可做,考虑
- 取log
- 求原根
顺序问题
顺序对答案有影响,求答案的最值
通常这个只需要对两个元素考虑顺序,因为相邻两个有大小关系符合冒泡排序的要求,从而可以对整个序列排序
例题如:10.12天山折梅手、Noip国王游戏
最值问题
可以考虑从大往小做或者从小往大做,例如从小往大加边就是Kruscal重构树的过程
研究成果
名字取得太高大上了嗯只是平时的一些小想法
数论分块套数论分块的复杂度
数论分块得到\(\frac{n}{i}\)后再对其数论分块
\(Ans<n\sum_{i=1}^{\sqrt n}\sqrt\frac{1}{i}\)
又有公式\(\sum_{i=1}^{n}\frac{1}{\sqrt i}<2\sqrt n\)(先假设,然后用数学归纳法证明)
所以\(Ans<n^{\frac{3}{4}}\)即为其估计复杂度,实际上要小得多
Noip前的大抱佛脚----一些思路的更多相关文章
- Noip前的大抱佛脚----文章索引
Noip前的大抱佛脚----赛前任务 Noip前的大抱佛脚----考场配置 Noip前的大抱佛脚----数论 Noip前的大抱佛脚----图论 Noip前的大抱佛脚----动态规划 Noip前的大抱佛 ...
- Noip前的大抱佛脚----Noip真题复习
Noip前的大抱佛脚----Noip真题复习 Tags: Noip前的大抱佛脚 Noip2010 题目不难,但是三个半小时的话要写四道题还是需要码力,不过按照现在的实力应该不出意外可以AK的. 机器翻 ...
- Noip前的大抱佛脚----字符串
目录 字符串 经验 用FFT求解字符串匹配问题 两(多)串DP时状态合并 最长公共子序列转LIS 位运算最大值 挂链哈希 哈希处理回文串 树哈希 字符串模板库 KMP 最小循环表示 Mancher A ...
- Noip前的大抱佛脚----数论
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...
- Noip前的大抱佛脚----图论
目录 图论 知识点 二分图相关 DFS找环 并查集维护二分图 二分图匹配的不可行边 最小生成树相关 最短路树 最短路相关 负环 多源最短路 差分约束系统 01最短路 k短路 网络流 zkw费用流 做题 ...
- Noip前的大抱佛脚----数据结构
目录 数据结构 知识点及其应用 线段树 神奇标记 标记不下放 并查集 维护二分图 维护后继位置 堆 可并堆的可持久化 dsu on tree 方式&原理 适用范围 单调队列 尺取合法区间 模板 ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- Noip前的大抱佛脚----根号对数算法
根号算法 分块 数列分块入门九题(hzwer) 入门题1,2,3,4,5,7 问题:给一段区间打上标记后单点查询 解法:主要是每块维护一些标记,计算答案等,此类分块较为简单 注意:块大小一般为\(\s ...
- Noip前的大抱佛脚----奇技淫巧
STL函数 set set查找前驱后继 multiset<int>::iterator iter; S.insert(x); iter=S.find(x);//返回迭代器 iter--;/ ...
随机推荐
- 从零开始——MySql01
注:如有侵权,请速联系,会速度删除!(都是同学分享的内容) 安装详解: 链接:http://pan.baidu.com/s/1skMQVgx 密码:z0xh Navicat安装包: 链接:http:/ ...
- Oracle 查询状态 自检
Tips:fnd_lobs表会保存我们上传的一些文件和Form界面“文件“-“导出”的文件.如果不定期清理了话,会出现文件上传失败,或者是导出按钮可以点击,但是点击完以后没有任何反应.这个时候我们应该 ...
- [SQL SERVER] 映射网络驱动器,让SQL服务器可见
在服务器上运行: EXEC sp_configure 'show advanced options', 1; GO RECONFIGURE; GO EXEC sp_configure 'xp_cmds ...
- SQL SERVER常用语法汇总
阅读目录 一.SQL分类 二.基础语句 三.sql技巧 四.(MS SQL Server)SQL语句导入导出大全 回到目录 一.SQL分类 DDL—数据定义语言(CREATE,ALTER,DROP,D ...
- ORACLE分区表操作
ORACLE分区表的操作应用 摘要:在大量业务数据处理的项目中,可以考虑使用分区表来提高应用系统的性能并方便数据管理,本文详细介绍了分区表的使用. 在大型的企业应用或企业级的数据库应用中,要处理的数据 ...
- September 17th 2017 Week 38th Sunday
Distance could make you forget about them, but the memories would always be there. 距离会让你遗忘,但是回忆却始终在那 ...
- September 15th 2017 Week 37th Friday
First I need your hand, then forever can begin. 我需要牵着你的手,才能告诉你什么是永远. If you want to shake hands with ...
- tkinter入门,canvas实现百度,抖音,加载
对于tkinter的各个控件,可以参看 : https://blog.csdn.net/weixin_38532159/article/details/78379523 这个已经比较全面了 今天利用 ...
- mysql 索引分类以及用途分析
MySQL索引分为普通索引.唯一性索引.全文索引.单列索引.多列索引等等.这里将为大家介绍着几种索引各自的用途. 一. MySQL: 索引以B树格式保存 Memory存储引擎可以选择Hash或BTre ...
- 使用Thunderbird时你可能会用到的技巧
1.添加qq邮箱账号 (1).开启IMAP/SMTP服务 先在QQ网页邮箱-设置-账户:开启IMAP/SMTP服务(2). Thunderbird 里设定端口(非POP):IMAP:imap.qq.c ...