一、Service的概念

  运行在Pod中的应用是向客户端提供服务的守护进程,比如,nginx、tomcat、etcd等等,它们都是受控于控制器的资源对象,存在生命周期,我们知道Pod资源对象在自愿或非自愿终端后,只能被重构的Pod对象所替代,属于不可再生类组件。而在动态和弹性的管理模式下,Service为该类Pod对象提供了一个固定、统一的访问接口和负载均衡能力。是不是觉得一堆话都没听明白呢????

  其实,就是说Pod存在生命周期,有销毁,有重建,无法提供一个固定的访问接口给客户端。并且为了同类的Pod都能够实现工作负载的价值,由此Service资源出现了,可以为一类Pod资源对象提供一个固定的访问接口和负载均衡,类似于阿里云的负载均衡或者是LVS的功能。

  但是要知道的是,Service和Pod对象的IP地址,一个是虚拟地址,一个是Pod IP地址,都仅仅在集群内部可以进行访问,无法接入集群外部流量。而为了解决该类问题的办法可以是在单一的节点上做端口暴露(hostPort)以及让Pod资源共享工作节点的网络名称空间(hostNetwork)以外,还可以使用NodePort或者是LoadBalancer类型的Service资源,或者是有7层负载均衡能力的Ingress资源。

  Service是Kubernetes的核心资源类型之一,Service资源基于标签选择器将一组Pod定义成一个逻辑组合,并通过自己的IP地址和端口调度代理请求到组内的Pod对象,如下图所示,它向客户端隐藏了真是的,处理用户请求的Pod资源,使得从客户端上看,就像是由Service直接处理并响应一样,是不是很像负载均衡器呢!

  Service对象的IP地址也称为Cluster IP,它位于为Kubernetes集群配置指定专用的IP地址范围之内,是一种虚拟的IP地址,它在Service对象创建之后保持不变,并且能够被同一集群中的Pod资源所访问。Service端口用于接受客户端请求,并将请求转发至后端的Pod应用的相应端口,这样的代理机制,也称为端口代理,它是基于TCP/IP 协议栈的传输层。

二、Service的实现模型

  在 Kubernetes 集群中,每个 Node 运行一个 kube-proxy 进程。kube-proxy 负责为 Service 实现了一种 VIP(虚拟 IP)的形式,而不是 ExternalName 的形式。 在 Kubernetes v1.0 版本,代理完全在 userspace。在 Kubernetes v1.1 版本,新增了 iptables 代理,但并不是默认的运行模式。 从 Kubernetes v1.2 起,默认就是 iptables 代理。在Kubernetes v1.8.0-beta.0中,添加了ipvs代理。在 Kubernetes v1.0 版本,Service 是 “4层”(TCP/UDP over IP)概念。 在 Kubernetes v1.1 版本,新增了 Ingress API(beta 版),用来表示 “7层”(HTTP)服务。

kube-proxy 这个组件始终监视着apiserver中有关service的变动信息,获取任何一个与service资源相关的变动状态,通过watch监视,一旦有service资源相关的变动和创建,kube-proxy都要转换为当前节点上的能够实现资源调度规则(例如:iptables、ipvs)

2.1、userspace代理模式

  这种模式,当客户端Pod请求内核空间的service iptables后,把请求转到给用户空间监听的kube-proxy 的端口,由kube-proxy来处理后,再由kube-proxy将请求转给内核空间的 service ip,再由service iptalbes根据请求转给各节点中的的service pod。

  由此可见这个模式有很大的问题,由客户端请求先进入内核空间的,又进去用户空间访问kube-proxy,由kube-proxy封装完成后再进去内核空间的iptables,再根据iptables的规则分发给各节点的用户空间的pod。这样流量从用户空间进出内核带来的性能损耗是不可接受的。在Kubernetes 1.1版本之前,userspace是默认的代理模型。

2.2、 iptables代理模式

  客户端IP请求时,直接请求本地内核service ip,根据iptables的规则直接将请求转发到到各pod上,因为使用iptable NAT来完成转发,也存在不可忽视的性能损耗。另外,如果集群中存在上万的Service/Endpoint,那么Node上的iptables rules将会非常庞大,性能还会再打折扣。iptables代理模式由Kubernetes 1.1版本引入,自1.2版本开始成为默认类型。

2.3、ipvs代理模式

  Kubernetes自1.9-alpha版本引入了ipvs代理模式,自1.11版本开始成为默认设置。客户端IP请求时到达内核空间时,根据ipvs的规则直接分发到各pod上。kube-proxy会监视Kubernetes Service对象和Endpoints,调用netlink接口以相应地创建ipvs规则并定期与Kubernetes Service对象和Endpoints对象同步ipvs规则,以确保ipvs状态与期望一致。访问服务时,流量将被重定向到其中一个后端Pod。

与iptables类似,ipvs基于netfilter 的 hook 功能,但使用哈希表作为底层数据结构并在内核空间中工作。这意味着ipvs可以更快地重定向流量,并且在同步代理规则时具有更好的性能。此外,ipvs为负载均衡算法提供了更多选项,例如:

  • rr:轮询调度
  • lc:最小连接数
  • dh:目标哈希
  • sh:源哈希
  • sed:最短期望延迟
  • nq:不排队调度

注意: ipvs模式假定在运行kube-proxy之前在节点上都已经安装了IPVS内核模块。当kube-proxy以ipvs代理模式启动时,kube-proxy将验证节点上是否安装了IPVS模块,如果未安装,则kube-proxy将回退到iptables代理模式。

如果某个服务后端pod发生变化,标签选择器适应的pod有多一个,适应的信息会立即反映到apiserver上,而kube-proxy一定可以watch到etc中的信息变化,而将它立即转为ipvs或者iptables中的规则,这一切都是动态和实时的,删除一个pod也是同样的原理。如图:

三、Service的定义

3.1、清单创建Service

 [root@k8s-master ~]# kubectl explain svc
KIND: Service
VERSION: v1 DESCRIPTION:
Service is a named abstraction of software service (for example, mysql)
consisting of local port (for example ) that the proxy listens on, and
the selector that determines which pods will answer requests sent through
the proxy. FIELDS:
apiVersion <string>
APIVersion defines the versioned schema of this representation of an
object. Servers should convert recognized schemas to the latest internal
value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#resources kind <string>
Kind is a string value representing the REST resource this object
represents. Servers may infer this from the endpoint the client submits
requests to. Cannot be updated. In CamelCase. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds metadata <Object>
Standard object's metadata. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata spec <Object>
Spec defines the behavior of a service.
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status status <Object>
Most recently observed status of the service. Populated by the system.
Read-only. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status

其中重要的4个字段:
apiVersion:
kind:
metadata:
spec:
  clusterIP: 可以自定义,也可以动态分配
  ports:(与后端容器端口关联)
  selector:(关联到哪些pod资源上)
  type:服务类型

3.2、service的类型

对一些应用(如 Frontend)的某些部分,可能希望通过外部(Kubernetes 集群外部)IP 地址暴露 Service。

Kubernetes ServiceTypes 允许指定一个需要的类型的 Service,默认是 ClusterIP 类型。

Type 的取值以及行为如下:

  • ClusterIP通过集群的内部 IP 暴露服务,选择该值,服务只能够在集群内部可以访问,这也是默认的 ServiceType
  • NodePort通过每个 Node 上的 IP 和静态端口(NodePort)暴露服务。NodePort 服务会路由到 ClusterIP 服务,这个 ClusterIP 服务会自动创建。通过请求 <NodeIP>:<NodePort>,可以从集群的外部访问一个 NodePort 服务。
  • LoadBalancer使用云提供商的负载均衡器,可以向外部暴露服务。外部的负载均衡器可以路由到 NodePort 服务和 ClusterIP 服务。
  • ExternalName通过返回 CNAME 和它的值,可以将服务映射到 externalName 字段的内容(例如, foo.bar.example.com)。 没有任何类型代理被创建,这只有 Kubernetes 1.7 或更高版本的 kube-dns 才支持。

3.2.1、ClusterIP的service类型演示:

[root@k8s-master mainfests]# cat redis-svc.yaml
apiVersion: v1
kind: Service
metadata:
name: redis
namespace: default
spec:
selector:  #标签选择器,必须指定pod资源本身的标签
app: redis
role: logstor
type: ClusterIP  #指定服务类型为ClusterIP
ports:   #指定端口
- port: 6379  #暴露给服务的端口
- targetPort: 6379  #容器的端口
[root@k8s-master mainfests]# kubectl apply -f redis-svc.yaml
service/redis created
[root@k8s-master mainfests]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> /TCP 36d
redis ClusterIP 10.107.238.182 <none> /TCP 1m [root@k8s-master mainfests]# kubectl describe svc redis
Name: redis
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"redis","namespace":"default"},"spec":{"ports":[{"port":,"targetPort":}...
Selector: app=redis,role=logstor
Type: ClusterIP
IP: 10.107.238.182  #service ip
Port: <unset> /TCP
TargetPort: /TCP
Endpoints: 10.244.1.16:6379  #此处的ip+端口就是pod的ip+端口
Session Affinity: None
Events: <none> [root@k8s-master mainfests]# kubectl get pod redis-5b5d6fbbbd-v82pw -o wide
NAME READY STATUS RESTARTS AGE IP NODE
redis-5b5d6fbbbd-v82pw / Running 20d 10.244.1.16 k8s-node01

从上演示可以总结出:service不会直接到pod,service是直接到endpoint资源,就是地址加端口,再由endpoint再关联到pod。

service只要创建完,就会在dns中添加一个资源记录进行解析,添加完成即可进行解析。资源记录的格式为:SVC_NAME.NS_NAME.DOMAIN.LTD.

默认的集群service 的A记录:svc.cluster.local.

redis服务创建的A记录:redis.default.svc.cluster.local.

3.2.2、NodePort的service类型演示:

  NodePort即节点Port,通常在部署Kubernetes集群系统时会预留一个端口范围用于NodePort,其范围默认为:30000~32767之间的端口。定义NodePort类型的Service资源时,需要使用.spec.type进行明确指定。

[root@k8s-master mainfests]# kubectl get pods --show-labels |grep myapp-deploy
myapp-deploy-69b47bc96d-4hxxw / Running 12m app=myapp,pod-template-hash=,release=canary
myapp-deploy-69b47bc96d-95bc4 / Running 12m app=myapp,pod-template-hash=,release=canary
myapp-deploy-69b47bc96d-hwbzt / Running 12m app=myapp,pod-template-hash=,release=canary
myapp-deploy-69b47bc96d-pjv74 / Running 12m app=myapp,pod-template-hash=,release=canary
myapp-deploy-69b47bc96d-rf7bs / Running 12m app=myapp,pod-template-hash=,release=canary [root@k8s-master mainfests]# cat myapp-svc.yaml #为myapp创建service
apiVersion: v1
kind: Service
metadata:
name: myapp
namespace: default
spec:
selector:
app: myapp
release: canary
type: NodePort
ports:
- port:
targetPort:
nodePort:
[root@k8s-master mainfests]# kubectl apply -f myapp-svc.yaml
service/myapp created
[root@k8s-master mainfests]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> /TCP 36d
myapp NodePort 10.101.245.119 <none> 80:30080/TCP 5s
redis ClusterIP 10.107.238.182 <none> /TCP 28m [root@k8s-master mainfests]# while true;do curl http://192.168.56.11:30080/hostname.html;sleep 1;done
myapp-deploy-69b47bc96d-95bc4
myapp-deploy-69b47bc96d-4hxxw
myapp-deploy-69b47bc96d-pjv74
myapp-deploy-69b47bc96d-rf7bs
myapp-deploy-69b47bc96d-95bc4
myapp-deploy-69b47bc96d-rf7bs
myapp-deploy-69b47bc96d-95bc4
myapp-deploy-69b47bc96d-pjv74
myapp-deploy-69b47bc96d-4hxxw
myapp-deploy-69b47bc96d-pjv74
myapp-deploy-69b47bc96d-pjv74
myapp-deploy-69b47bc96d-4hxxw
myapp-deploy-69b47bc96d-pjv74
myapp-deploy-69b47bc96d-pjv74
myapp-deploy-69b47bc96d-pjv74
myapp-deploy-69b47bc96d-95bc4
myapp-deploy-69b47bc96d-hwbzt [root@k8s-master mainfests]# while true;do curl http://192.168.56.11:30080/;sleep 1;done

Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
  Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
  Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
  Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
  Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
  Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>

从以上例子,可以看到通过NodePort方式已经实现了从集群外部端口进行访问,访问链接如下:http://192.168.56.11:30080/。实践中并不鼓励用户自定义使用节点的端口,因为容易和其他现存的Service冲突,建议留给系统自动配置。

3.2.3、Pod的会话保持

  Service资源还支持Session affinity(粘性会话)机制,可以将来自同一个客户端的请求始终转发至同一个后端的Pod对象,这意味着它会影响调度算法的流量分发功用,进而降低其负载均衡的效果。因此,当客户端访问Pod中的应用程序时,如果有基于客户端身份保存某些私有信息,并基于这些私有信息追踪用户的活动等一类的需求时,那么应该启用session affinity机制。

  Service affinity的效果仅仅在一段时间内生效,默认值为10800秒,超出时长,客户端再次访问会重新调度。该机制仅能基于客户端IP地址识别客户端身份,它会将经由同一个NAT服务器进行原地址转换的所有客户端识别为同一个客户端,由此可知,其调度的效果并不理想。Service 资源 通过. spec. sessionAffinity 和. spec. sessionAffinityConfig 两个字段配置粘性会话。 spec. sessionAffinity 字段用于定义要使用的粘性会话的类型,它仅支持使用“ None” 和“ ClientIP” 两种属性值。如下:

[root@k8s-master mainfests]# kubectl explain svc.spec.sessionAffinity
KIND: Service
VERSION: v1 FIELD: sessionAffinity <string> DESCRIPTION:
Supports "ClientIP" and "None". Used to maintain session affinity. Enable
client IP based session affinity. Must be ClientIP or None. Defaults to
None. More info:
https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies

sessionAffinity支持ClientIP和None 两种方式,默认是None(随机调度) ClientIP是来自于同一个客户端的请求调度到同一个pod中

[root@k8s-master mainfests]# vim myapp-svc.yaml
apiVersion: v1
kind: Service
metadata:
name: myapp
namespace: default
spec:
selector:
app: myapp
release: canary
sessionAffinity: ClientIP
type: NodePort
ports:
- port:
targetPort:
nodePort:
[root@k8s-master mainfests]# kubectl apply -f myapp-svc.yaml
service/myapp configured
[root@k8s-master mainfests]# kubectl describe svc myapp
Name: myapp
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"myapp","namespace":"default"},"spec":{"ports":[{"nodePort":,"port":,"ta...
Selector: app=myapp,release=canary
Type: NodePort
IP: 10.101.245.119
Port: <unset> /TCP
TargetPort: /TCP
NodePort: <unset> /TCP
Endpoints: 10.244.1.18:,10.244.1.19:,10.244.2.15: + more...
Session Affinity: ClientIP
External Traffic Policy: Cluster
Events: <none>
[root@k8s-master mainfests]# while true;do curl http://192.168.56.11:30080/hostname.html;sleep 1;done
myapp-deploy-69b47bc96d-hwbzt
myapp-deploy-69b47bc96d-hwbzt
myapp-deploy-69b47bc96d-hwbzt
myapp-deploy-69b47bc96d-hwbzt
myapp-deploy-69b47bc96d-hwbzt
myapp-deploy-69b47bc96d-hwbzt
myapp-deploy-69b47bc96d-hwbzt
myapp-deploy-69b47bc96d-hwbzt

也可以使用打补丁的方式进行修改yaml内的内容,如下:

kubectl patch svc myapp -p '{"spec":{"sessionAffinity":"ClusterIP"}}'  #session保持,同一ip访问同一个pod

kubectl patch svc myapp -p '{"spec":{"sessionAffinity":"None"}}'    #取消session 

四、Headless Service

有时不需要或不想要负载均衡,以及单独的 Service IP。 遇到这种情况,可以通过指定 Cluster IP(spec.clusterIP)的值为 "None" 来创建 Headless Service。

这个选项允许开发人员自由寻找他们自己的方式,从而降低与 Kubernetes 系统的耦合性。 应用仍然可以使用一种自注册的模式和适配器,对其它需要发现机制的系统能够很容易地基于这个 API 来构建。

对这类 Service 并不会分配 Cluster IP,kube-proxy 不会处理它们,而且平台也不会为它们进行负载均衡和路由。 DNS 如何实现自动配置,依赖于 Service 是否定义了 selector。

(1)编写headless service配置清单
[root@k8s-master mainfests]# cp myapp-svc.yaml myapp-svc-headless.yaml
[root@k8s-master mainfests]# vim myapp-svc-headless.yaml
apiVersion: v1
kind: Service
metadata:
name: myapp-headless
namespace: default
spec:
selector:
app: myapp
release: canary
clusterIP: "None"  #headless的clusterIP值为None
ports:
- port:
targetPort:

(2)创建headless service
[root@k8s-master mainfests]# kubectl apply -f myapp-svc-headless.yaml
service/myapp-headless created
[root@k8s-master mainfests]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> /TCP 36d
myapp NodePort 10.101.245.119 <none> :/TCP 1h
myapp-headless ClusterIP None <none> 80/TCP 5s
redis ClusterIP 10.107.238.182 <none> /TCP 2h

(3)使用coredns进行解析验证
[root@k8s-master mainfests]# dig -t A myapp-headless.default.svc.cluster.local. @10.96.0.10 ; <<>> DiG 9.9.-RedHat-9.9.-.el7 <<>> -t A myapp-headless.default.svc.cluster.local. @10.96.0.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id:
;; flags: qr aa rd ra; QUERY: , ANSWER: , AUTHORITY: , ADDITIONAL: ;; OPT PSEUDOSECTION:
; EDNS: version: , flags:; udp:
;; QUESTION SECTION:
;myapp-headless.default.svc.cluster.local. IN A ;; ANSWER SECTION:
myapp-headless.default.svc.cluster.local. IN A 10.244.1.18
myapp-headless.default.svc.cluster.local. IN A 10.244.1.19
myapp-headless.default.svc.cluster.local. IN A 10.244.2.15
myapp-headless.default.svc.cluster.local. IN A 10.244.2.16
myapp-headless.default.svc.cluster.local. IN A 10.244.2.17 ;; Query time: msec
;; SERVER: 10.96.0.10#(10.96.0.10)
;; WHEN: Thu Sep :: EDT
;; MSG SIZE rcvd: [root@k8s-master mainfests]# kubectl get svc -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP 36d [root@k8s-master mainfests]# kubectl get pods -o wide -l app=myapp
NAME READY STATUS RESTARTS AGE IP NODE
myapp-deploy-69b47bc96d-4hxxw / Running 1h 10.244.1.18 k8s-node01
myapp-deploy-69b47bc96d-95bc4 / Running 1h 10.244.2.16 k8s-node02
myapp-deploy-69b47bc96d-hwbzt / Running 1h 10.244.1.19 k8s-node01
myapp-deploy-69b47bc96d-pjv74 / Running 1h 10.244.2.15 k8s-node02
myapp-deploy-69b47bc96d-rf7bs / Running 1h 10.244.2.17 k8s-node02

(4)对比含有ClusterIP的service解析
[root@k8s-master mainfests]# dig -t A myapp.default.svc.cluster.local. @10.96.0.10 ; <<>> DiG 9.9.-RedHat-9.9.-.el7 <<>> -t A myapp.default.svc.cluster.local. @10.96.0.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id:
;; flags: qr aa rd ra; QUERY: , ANSWER: , AUTHORITY: , ADDITIONAL: ;; OPT PSEUDOSECTION:
; EDNS: version: , flags:; udp:
;; QUESTION SECTION:
;myapp.default.svc.cluster.local. IN A ;; ANSWER SECTION:
myapp.default.svc.cluster.local. IN A 10.101.245.119 ;; Query time: msec
;; SERVER: 10.96.0.10#(10.96.0.10)
;; WHEN: Thu Sep :: EDT
;; MSG SIZE rcvd: [root@k8s-master mainfests]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> /TCP 36d
myapp NodePort 10.101.245.119 <none> 80:30080/TCP 1h
myapp-headless ClusterIP None <none> /TCP 11m
redis ClusterIP 10.107.238.182 <none> /TCP 2h

从以上的演示可以看到对比普通的service和headless service,headless service做dns解析是直接解析到pod的,而servcie是解析到ClusterIP的,那么headless有什么用呢???这将在statefulset中应用到,这里暂时仅仅做了解什么是headless service和创建方法。

Kubernetes学习之路(十四)之服务发现Service的更多相关文章

  1. Kubernetes学习之路(四)之Node节点二进制部署

    K8S Node节点部署 1.部署kubelet (1)二进制包准备 [root@linux-node1 ~]# cd /usr/local/src/kubernetes/server/bin/ [r ...

  2. 学习之路十四:客户端调用WCF服务的几种方法小议

    最近项目中接触了一点WCF的知识,也就是怎么调用WCF服务,上网查了一些资料,很快就搞出来,可是不符合头的要求,主要有以下几个方面: ①WCF的地址会变动,地址虽变,但是里面的逻辑不变! ②不要引用W ...

  3. kubernetes学习笔记之十四:helm入门

    1.Helm的简介 Helm是Kubernetes的一个包管理工具,用来简化Kubernetes应用的部署和管理.可以把Helm比作CentOS的yum工具. Helm有如下几个基本概念: Chart ...

  4. 嵌入式Linux驱动学习之路(十四)按键驱动-同步、互斥、阻塞

    目的:同一个时刻,只能有一个应用程序打开我们的驱动程序. ①原子操作: v = ATOMIC_INIT( i )  定义原子变量v并初始化为i atomic_read(v)        返回原子变量 ...

  5. zigbee学习之路(十四):基于协议栈的无线数据传输

    一.前言 上次实验,我们介绍了zigbee原理的应用与使用,进行了基于zigbee的串口发送协议,但是上个实验并没有实现数据的收发.在这个实验中,我们要进行zigbee的接受和发送实验. 二.实验功能 ...

  6. IOS学习之路十四(用TableView做的新闻客户端展示页面)

    最近做的也个项目,要做一个IOS的新闻展示view(有图有文字,不用UIwebview,因为数据是用webservice解析的到的json数据),自己一直没有头绪,可后来听一个学长说可以用listvi ...

  7. Kubernetes学习之路目录

    Kubernetes基础篇 环境说明 版本说明 系统环境 Centos 7.2 Kubernetes版本 v1.11.2 Docker版本 v18.09 Kubernetes学习之路(一)之概念和架构 ...

  8. 我的MYSQL学习心得(十四) 备份和恢复

    我的MYSQL学习心得(十四) 备份和恢复 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) ...

  9. VSTO学习笔记(十四)Excel数据透视表与PowerPivot

    原文:VSTO学习笔记(十四)Excel数据透视表与PowerPivot 近期公司内部在做一种通用查询报表,方便人力资源分析.统计数据.由于之前公司系统中有一个类似的查询使用Excel数据透视表完成的 ...

  10. Linux学习总结(十四)—— 查看CPU信息

    文章首发于[博客园-陈树义],点击跳转到原文Linux学习总结(十四)-- 查看CPU信息. Linux学习总结(十四)-- 查看CPU信息 商用服务器CPU最常用的是 Intel Xeon 系列,该 ...

随机推荐

  1. 解决python2和python3的pip冲突

    最近突然出现了一种情况当电脑上同时安装python2和python3的时候会导致我的pip冲突 . 最终经过我的发现是因为其环境没有配置好 还有就是没有找到精准的包导致的 1.下载python2.7, ...

  2. OpenGLES渲染

    OpenGLES渲染 OpenGLES使用GPU渲染图片,不占用CPU,但其使用还是挺复杂的. 先用OpenGLES显示一张图片: // // ShowViewController.m // Open ...

  3. Linux strace命令详解

    Linux抓取TCP的命令: tcpdump ps -ef 参数命令详解: Linux下一切皆文件,我们打开一个socket,实际上也是打开了一个文件 我们打开一个网卡,实际上也是调用Linux系统的 ...

  4. Linux ifconfig命令详解

    ifconfig(interfaces config).通常需要以root身份登录或使用sudo来使用ifconfig工具 ifconfig 命令用来查看和配置网络设备.当网络环境发生改变时可通过此命 ...

  5. Word2016“此功能看似已中断 并需要修复”

    Word2016"此功能看似已中断 并需要修复" 文:铁乐与猫 在Win10系统上安装 Office 2016 之后,每次打开Word文档都会提示"很抱歉,此功能看似已中 ...

  6. win8中 cmd直接以管理员权限运行

    一.组合键 WIN+X   二.锁定到任务栏,方便以后快速启动     三.控制面板->控制中心     四.更改用户账户控制设置--调到最低 好了,点击任务栏的命令提示符

  7. Basestation函数解析(二)

    ---恢复内容开始--- 这部分从Basestation的RecvDataThread开始,流程为 RecvDataThread->RecvData->Decoder->PostDa ...

  8. ES6中map和set用法

    ES6中map和set用法 --转载自廖雪峰的官方网站 一.map Map是一组键值对的结构,具有极快的查找速度. 举个例子,假设要根据同学的名字查找对应的成绩,如果用Array实现,需要两个Arra ...

  9. Phthon3.4 新特性

    1.       print的变化:. 在python3.0中,print成为了一个函数,将传入的参数一输出. Python3.0: Python 2.5: 2.使用比较操作符时,如果被比较的对象没有 ...

  10. Regular Expression Patterns

    Regular Expression Patterns Following lists the regular expression syntax that is available in Pytho ...