爬虫必备—scrapy-redis(分布式爬虫)
转载自:http://www.cnblogs.com/wupeiqi/articles/6912807.html
scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能:
- scheduler - 调度器
- dupefilter - URL去重规则(被调度器使用)
- pipeline - 数据持久化
scrapy-redis组件
1. URL去重
定义去重规则(被调度器调用并应用) a. 内部会使用以下配置进行连接Redis # REDIS_HOST = 'localhost' # 主机名
# REDIS_PORT = 6379 # 端口
# REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8' b. 去重规则通过redis的集合完成,集合的Key为: key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
默认配置:
DUPEFILTER_KEY = 'dupefilter:%(timestamp)s' c. 去重规则中将url转换成唯一标示,然后在redis中检查是否已经在集合中存在 from scrapy.utils import request
from scrapy.http import Request req = Request(url='http://www.cnblogs.com/wupeiqi.html')
result = request.request_fingerprint(req)
print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c PS:
- URL参数位置不同时,计算结果一致;
- 默认请求头不在计算范围,include_headers可以设置指定请求头
示例:
from scrapy.utils import request
from scrapy.http import Request req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'})
result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) """
# Ensure all spiders share same duplicates filter through redis.
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
2. 调度器
"""
调度器,调度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)进行保存请求,并且使用RFPDupeFilter对URL去重 a. 调度器
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
SCHEDULER_FLUSH_ON_START = True # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类 """
# Enables scheduling storing requests queue in redis.
SCHEDULER = "scrapy_redis.scheduler.Scheduler" # Default requests serializer is pickle, but it can be changed to any module
# with loads and dumps functions. Note that pickle is not compatible between
# python versions.
# Caveat: In python 3.x, the serializer must return strings keys and support
# bytes as values. Because of this reason the json or msgpack module will not
# work by default. In python 2.x there is no such issue and you can use
# 'json' or 'msgpack' as serializers.
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # Don't cleanup redis queues, allows to pause/resume crawls.
# SCHEDULER_PERSIST = True # Schedule requests using a priority queue. (default)
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # Alternative queues.
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' # Max idle time to prevent the spider from being closed when distributed crawling.
# This only works if queue class is SpiderQueue or SpiderStack,
# and may also block the same time when your spider start at the first time (because the queue is empty).
# SCHEDULER_IDLE_BEFORE_CLOSE = 10
3. 数据持久化
2. 定义持久化,爬虫yield Item对象时执行RedisPipeline a. 将item持久化到redis时,指定key和序列化函数 REDIS_ITEMS_KEY = '%(spider)s:items'
REDIS_ITEMS_SERIALIZER = 'json.dumps' b. 使用列表保存item数据
4. 起始URL相关
"""
起始URL相关 a. 获取起始URL时,去集合中获取还是去列表中获取?True,集合;False,列表
REDIS_START_URLS_AS_SET = False # 获取起始URL时,如果为True,则使用self.server.spop;如果为False,则使用self.server.lpop
b. 编写爬虫时,起始URL从redis的Key中获取
REDIS_START_URLS_KEY = '%(name)s:start_urls' """
# If True, it uses redis' ``spop`` operation. This could be useful if you
# want to avoid duplicates in your start urls list. In this cases, urls must
# be added via ``sadd`` command or you will get a type error from redis.
# REDIS_START_URLS_AS_SET = False # Default start urls key for RedisSpider and RedisCrawlSpider.
# REDIS_START_URLS_KEY = '%(name)s:start_urls'
scrapy-redis示例
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
#
#
# from scrapy_redis.scheduler import Scheduler
# from scrapy_redis.queue import PriorityQueue
# SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
# SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
# SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
# SCHEDULER_FLUSH_ON_START = False # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
# SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
# SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
# SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类
#
#
#
# REDIS_HOST = '10.211.55.13' # 主机名
# REDIS_PORT = 6379 # 端口
# # REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# # REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8' 配置文件
配置文件
import scrapy class ChoutiSpider(scrapy.Spider):
name = "chouti"
allowed_domains = ["chouti.com"]
start_urls = (
'http://www.chouti.com/',
) def parse(self, response):
for i in range(0,10):
yield
爬虫文件
爬虫必备—scrapy-redis(分布式爬虫)的更多相关文章
- 【Python3爬虫】学习分布式爬虫第一步--Redis分布式爬虫初体验
一.写在前面 之前写的爬虫都是单机爬虫,还没有尝试过分布式爬虫,这次就是一个分布式爬虫的初体验.所谓分布式爬虫,就是要用多台电脑同时爬取数据,相比于单机爬虫,分布式爬虫的爬取速度更快,也能更好地应对I ...
- scrapy进行分布式爬虫
今天,参照崔庆才老师的爬虫实战课程,实践了一下分布式爬虫,并没有之前想象的那么神秘,其实非常的简单,相信你看过这篇文章后,不出一小时,便可以动手完成一个分布式爬虫! 1.分布式爬虫原理 首先我们来看一 ...
- scrapy补充-分布式爬虫
spiders 介绍:在项目中是创建爬虫程序的py文件 #1.Spiders是由一系列类(定义了一个网址或一组网址将被爬取)组成,具体包括如何执行爬取任务并且如何从页面中提取结构化的数据. #2.换句 ...
- Scrapy 框架 分布式 爬虫
分布式 爬虫 scrapy-redis 实现 原生scrapy 无法实现 分布式 调度器和管道无法被分布式机群共享 环境安装 - pip install scrapy_redis 导包:from sc ...
- scrapy简单分布式爬虫
经过一段时间的折腾,终于整明白scrapy分布式是怎么个搞法了,特记录一点心得. 虽然scrapy能做的事情很多,但是要做到大规模的分布式应用则捉襟见肘.有能人改变了scrapy的队列调度,将起始的网 ...
- 16 Scrapy之分布式爬虫
redis分布式部署 1.scrapy框架是否可以自己实现分布式? - 不可以.原因有二. 其一:因为多台机器上部署的scrapy会各自拥有各自的调度器,这样就使得多台机器无法分配start_urls ...
- 【Python3爬虫】爬取美女图新姿势--Redis分布式爬虫初体验
一.写在前面 之前写的爬虫都是单机爬虫,还没有尝试过分布式爬虫,这次就是一个分布式爬虫的初体验.所谓分布式爬虫,就是要用多台电脑同时爬取数据,相比于单机爬虫,分布式爬虫的爬取速度更快,也能更好地应对I ...
- 爬虫必备—Scrapy
一.Scrapy简介 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取 (更确切来说, 网络抓取 ...
- python网络爬虫(10)分布式爬虫爬取静态数据
目的意义 爬虫应该能够快速高效的完成数据爬取和分析任务.使用多个进程协同完成一个任务,提高了数据爬取的效率. 以百度百科的一条为起点,抓取百度百科2000左右词条数据. 说明 参阅模仿了:https: ...
随机推荐
- 【xsy1143】 兔子的数字 搜索
题目大意:请找到第$k$大的数,满足各位数字之和等于各位数字之积.其中$k≤10^{18}$. 首先我们要确定这个第$k$大的数有多大 我们用$f[i][j][he][ji]$表示我们要搜索一个$i$ ...
- 使用Maven命令行快速创建项目骨架(archetype)
> mvn archetype:generate 接下来就会输出一些列带索引变化的archetype项可供我们选择,然后提示我们选择一个编号,可以直接回车选择默认的编号(392),然后就跟着 ...
- (转) Rabbitmq学习笔记
详见原文: http://blog.csdn.net/shatty/article/details/9529463 Rabbitmq学习笔记
- 解决waveInOpen录音编译x64程序出错的问题
1.之前也碰到过x86程序升级为x64程序,关键点是类型大小的使用. 之前同事碰到过一个用int表示指针的程序,程序改为x64会出错,找原因找了半天. 2.今天我也碰到了,使用aveInOpen录音, ...
- 第5章—构建Spring Web应用程序—SpringMVC详解
SpringMVC详解 5.1.跟踪Springmvc的请求 SpringMVC的核心流程如下: 具体步骤: 第一步:发起请求到前端控制器(DispatcherServlet) 第二步:前端控制器请求 ...
- Postman—做各种类型的http接口测试
首先,做接口测试前要有明确的接口文档,假设已经在PC上安装好了Postman. 1. 普通的以key-value传参的get请求 e.g. 获取用户信息 Get请求,写入url拼好参数,发送请求,查看 ...
- 探索DatePicker新用法
很少用DatePicker,项目需要用到DatePicker,再用时发现跟以前有些变化,重新简单梳理一下DatePicker的用法. 先上效果图: 首先是xml文件的用法: 以前是用android:s ...
- IDEA里运行程序时出现Failed to execute goal org.scala-tools:maven-scala-plugin:2.15.2:compile(default) on Project DataFusion:wrap:org.apache.commons...错误的解决办法(图文详解)
不多说,直接上干货! 问题详情 比如我们习惯在IDEA里打包用mvn clean package 在Scala IDEA for eclipse里出现mvn clean compile assembl ...
- 蝴蝶效应--由'sudo -s ...'引发的vim autocmd使用异常
1. 背景介绍 自加入RedHat起,我就把家里的台式机(Ubuntu 16.04 LTS)的默认登录用户veli切换成了huanli, 主要是为了跟公司的电脑配置对齐以方便未来WFH,但引发了一个v ...
- yum命令速查
1 yum的基本原理 CentOS可在yum服务器上下载官方网站给出的rpm给出的表头列表数据,该数据除了记载每个rpm软件的相依性之外,也说明了rpm所放置的容器(repository)所在.通过分 ...