OJ题号:
  BZOJ1977、COGS2453

题目大意:
  给你一个无向连通图,求严格次小生成树。

思路:
  对于一般次小生成树,我们有一个结论:一般次小生成树一定可以通过替换掉最小生成树某一条边得到。
  因此对于一般次小生成树,我们只需要枚举不在MST上的每一条边,并枚举这条边对应两点路径上的所有边,尝试交换这两条边即可。
  显然枚举树上每一条边的复杂度是O(n)的,会TLE,因此我们可以用树剖或者树上倍增的方法记录区间最大边。
  然而这题要求的是严格次小生成树,所以万一你枚举的这两条边相等就WA了。
  为了保险起见,我们再记录区间最大边的同时,还要记录区间严格次大边。
  然后枚举的时候只要判断当前区间最大边是否和那条非树边相等,如果相等的话就取那条次大边即可。
  一开始因为没有权限号就去COGS上交,然后随随便便就A了,还跑了Rank1。
  但是据说那里数据比较水,就找q234rty借了权限号,去BZOJ上交,果然WA了。
  随机了一个小数据,发现是最后倍增求最大树边的时候最后一层没跳上去。
  去网上拉了一个程序对拍,发现无限WA。
  拿了一个数据手动模拟了一遍,发现原来是网上的题解错了。。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const long long inf=0x7fffffffffffffffll;
const int V=,logV=;
inline int log2(const float x) {
return ((unsigned&)x>>&)-;
}
class DisjointSet {
private:
int anc[V];
int Find(const int &x) {
return x==anc[x]?x:anc[x]=Find(anc[x]);
}
public:
DisjointSet() {
for(register int i=;i<V;i++) {
anc[i]=i;
}
}
void Union(const int &x,const int &y) {
anc[Find(x)]=Find(y);
}
bool isConnected(const int &x,const int &y) {
return Find(x)==Find(y);
}
};
DisjointSet s;
struct Edge1 {
int u,v,w;
bool inMST;
bool operator < (const Edge1 &another) const {
return w<another.w;
}
};
std::vector<Edge1> e1;
struct Edge {
int to,w;
};
std::vector<Edge> e[V];
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
}
long long mst=;
inline void kruskal() {
std::sort(e1.begin(),e1.end());
for(register unsigned i=;i<e1.size();i++) {
const int &u=e1[i].u,&v=e1[i].v,&w=e1[i].w;
if(s.isConnected(u,v)) continue;
s.Union(u,v);
add_edge(u,v,w);
add_edge(v,u,w);
e1[i].inMST=true;
mst+=w;
}
}
int anc[V][logV],max[V][logV],max2[V][logV];
int dep[V];
std::queue<int> q;
inline void bfs() {
q.push();
while(!q.empty()) {
const int x=q.front();
q.pop();
dep[x]=dep[anc[x][]]+;
for(register int i=;i<=log2(dep[x]);i++) {
anc[x][i]=anc[anc[x][i-]][i-];
max[x][i]=std::max(max[x][i-],max[anc[x][i-]][i-]);
if(max[x][i-]!=max[anc[x][i-]][i-]) {
max2[x][i]=std::min(max[x][i-],max[anc[x][i-]][i-]);
} else {
max2[x][i]=std::max(max2[x][i-],max2[anc[x][i-]][i-]);
}
}
for(register unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to;
if(y==anc[x][]) continue;
anc[y][]=x;
max[y][]=e[x][i].w;
q.push(y);
}
}
}
inline int maxEdge(int x,int y,const int &w) {
int tmax=;
while(dep[x]!=dep[y]) {
if(dep[x]<dep[y]) std::swap(x,y);
for(register int i=log2(dep[x]);i>=;i--) {
if(dep[anc[x][i]]>=dep[y]) {
if(max[x][i]<w) {
tmax=std::max(tmax,max[x][i]);
} else if(max2[x][i]<w) {
tmax=std::max(tmax,max2[x][i]);
}
x=anc[x][i];
}
}
}
if(x==y) return tmax;
for(register int i=log2(dep[x]);i>=;i--) {
if(anc[x][i]!=anc[y][i]) {
if(max[x][i]<w) {
tmax=std::max(tmax,max[x][i]);
} else if(max2[x][i]<w) {
tmax=std::max(tmax,max2[x][i]);
}
if(max[y][i]<w) {
tmax=std::max(tmax,max[y][i]);
} else if(max2[y][i]<w) {
tmax=std::max(tmax,max2[y][i]);
}
x=anc[x][i],y=anc[y][i];
}
}
if(max[x][]<w) {
tmax=std::max(tmax,max[x][]);
} else if(max2[x][]<w) {
tmax=std::max(tmax,max2[x][]);
}
if(max[y][]<w) {
tmax=std::max(tmax,max[y][]);
} else if(max2[y][]<w) {
tmax=std::max(tmax,max2[y][]);
}
return tmax;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("secmst.in","r+",stdin);
freopen("secmst.out","w+",stdout);
#endif
int n=getint(),m=getint();
for(register int i=;i<=m;i++) {
const int u=getint(),v=getint(),w=getint();
e1.push_back((Edge1){u,v,w,false});
}
kruskal();
bfs();
long long ans=inf;
for(register unsigned i=;i<e1.size();i++) {
if(e1[i].inMST) continue;
const int &u=e1[i].u,&v=e1[i].v,&w=e1[i].w;
ans=std::min(ans,mst-maxEdge(u,v,w)+w);
}
printf("%lld\n",ans);
#ifndef ONLINE_JUDGE
fclose(stdin),fclose(stdout);
#endif
return ;
}

[BJOI2010]次小生成树的更多相关文章

  1. [BJOI2010] 严格次小生成树

    题目链接 一个严格次小生成树的模板题. 看到次小生成树,我们有一个很直观的想法就是先构造出来最小生成树,然后将这个最小生成树上面最大的一条边替换成和它值最相近而且比他大的边. 那么首先就是用krusk ...

  2. HDU 4081Qin Shi Huang's National Road System(次小生成树)

    题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...

  3. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  4. The Unique MST(次小生成树)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22335   Accepted: 7922 Description Give ...

  5. URAL 1416 Confidential --最小生成树与次小生成树

    题意:求一幅无向图的最小生成树与最小生成树,不存在输出-1 解法:用Kruskal求最小生成树,标记用过的边.求次小生成树时,依次枚举用过的边,将其去除后再求最小生成树,得出所有情况下的最小的生成树就 ...

  6. POJ1679The Unique MST(次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25203   Accepted: 8995 D ...

  7. [kuangbin带你飞]专题八 生成树 - 次小生成树部分

    百度了好多自学到了次小生成树 理解后其实也很简单 求最小生成树的办法目前遇到了两种 1 prim 记录下两点之间连线中的最长段 F[i][k] 之后枚举两点 若两点之间存在没有在最小生成树中的边 那么 ...

  8. URAL 1416 Confidential(次小生成树)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1416 Zaphod Beeblebrox — President of the Impe ...

  9. ACM题目————次小生成树

    Description 最小生成树大家都已经很了解,次小生成树就是图中构成的树的权值和第二小的树,此值也可能等于最小生成树的权值和,你的任务就是设计一个算法计算图的最小生成树. Input 存在多组数 ...

随机推荐

  1. 微信小程序实战--开发一个简单的快递单号查询

    功能如图: 虽然工作中只负责小程序后台开发,但是还是小程序开发产生了浓厚的兴趣,官方文档也是超级详细了 这里就简单做一个快递单号的查询: 新建一个page: 接着就可以写wxml了.这里用一个简单的i ...

  2. SQLServer数据操作(建库、建表以及数据的增删查改)[转]

    SQLSever数据操作   一.建立数据库:   create database DB ---数据库名称 (          name=data1 --文件名,          filename ...

  3. CentOS7.3下的一个iptables配置

    centos7.3默认使用的防火墙应该是firewall,而不是iptables.而我们xxmj服务器使用的是iptables防火墙.所以,在配置防火墙之前,我们需要先关闭firewall,安装ipt ...

  4. 87.在ModelSim中添加Xilinx ISE仿真库

    在ModelSim中添加Xilinx ISE仿真库 说明: l ModelSim一定要安装在不带空格的目录下,即不要安装在“Program Files”目录下.如作者是安装在D:\softwares\ ...

  5. mysqli链接数据库示例代码

    $mysqli = new mysqli("localhost", "数据库用户名", "数据库密码", "数据库名称" ...

  6. opencv(0)安装与配置

    1.windows下 1.1 exe安装 windows下可以安装opencv的exe版本,已经编译好了,很省事. 到https://opencv.org/releases.html下载需要的open ...

  7. KMP模板及总结

    KMP是一种字符串匹配算法,它在时间复杂度上较暴力匹配算法由很大的优势.比如我要找字符串S中是否存在子串P,如果暴力匹配的话,则时间复杂度为O(n*m),而kmp算法时间复杂度为O(n+m). 这里我 ...

  8. Luogu P3384 【【模板】树链剖分】

    转载请注明出处,部分内容引自banananana大神的博客 ~~别说你不知道什么是树~~╮(─▽─)╭(帮你百度一下) 先来回顾两个问题:1,将树从x到y结点最短路径上所有节点的值都加上z 这也是个模 ...

  9. JAVA复习笔记分布式篇:zookeeper

        前言:终于到分布式篇,前面把JAVA的一些核心知识复习了一遍,也是一个JAVA程序员最基本要掌握的知识点,接下来分布式的知识点算是互联网行业的JAVA程序员必备的技能:     概念:ZooK ...

  10. javaweb笔记一

    内连接(自然连接): 只有两个表相匹配的行才能在结果集中出现 外连接: 包括 (1)左外连接(左边的表不加限制) (2)右外连接(右边的表不加限制) (3)全外连接(左右两表都不加限制 一个空的构造器 ...