Special Prime

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 738    Accepted Submission(s):
390

Problem Description
Give you a prime number p, if you could find some
natural number (0 is not inclusive) n and m, satisfy the following expression:

  
We call this p a
“Special Prime”.
AekdyCoin want you to tell him the number of the “Special
Prime” that no larger than L.
For example:
  If L =20
1^3 + 7*1^2 =
2^3
8^3 + 19*8^2 = 12^3
That is to say the prime number 7, 19 are two
“Special Primes”.
 
Input
The input consists of several test cases.
Every case
has only one integer indicating L.(1<=L<=10^6)
 
Output
For each case, you should output a single line indicate
the number of “Special Prime” that no larger than L. If you can’t find such
“Special Prime”, just output “No Special Prime!”
 
Sample Input
7
777
 
Sample Output
1
10

Hint

 
Source
 
Recommend
gaojie
 

Statistic | Submit | Discuss | Note

Home | Top Hangzhou
Dianzi University Online Judge 3.0
Copyright © 2005-2018 HDU ACM Team. All Rights Reserved.
Designer & Developer: Wang
Rongtao
 LinLe GaoJie GanLu
Total
0.000000(s) query 1, Server time : 2018-10-18 11:20:31, Gzip enabled
Administration

Solution

纯数论推式子找性质辣


分析:$n^b + p*n^{b-1} = m^b   ==>   n^{b-1}*[n+p]=m^b$

因为$n$里面要么有$p$因子,要么没有,所以$gcd(n^{b-1},n+p)=1$或(含有p因子的数)

当$gcd(n^{b-1},n+p)== (含有p因子的数)$的时候,显然无解,因为假设有解,那么$n=K*p , K^{b-1}*p^b*(K+1)$

如果希望上面的$==m^b$,那么$K^{b-1} *(K+1)$必须能表示成某个数X的b次方,而$gcd(K,K+1)=1$,所以他们根本就没共同因

子,所以没办法表示成$X$的$b$次方,所以$gcd(n^{b-1},n+p)=1$

假设$n=x^b$,$n+p=y^b$,那么显然$m=x^{b-1}*y$,而$p=y^b-x^b$

显然$(y-x)|p$,那么必须有$y-x=1$,所以$y=x+1$,代上去就发现,$p=(x+1)^b-x ^b$。所以枚举$x$,然后判断$p$是否是素数即可。
---------------------
作者:acdreamers
来源:CSDN
原文:https://blog.csdn.net/acdreamers/article/details/8572959


Code

#include<bits/stdc++.h>
using namespace std; int isnot[], prime[], t, ans[]; void init() {
isnot[] = ;
for(int i = ; i <= ; i ++) {
if(!isnot[i]) prime[++t] = i;
for(int j = ; j <= t; j ++) {
int v = prime[j] * i;
if(v > ) break;
isnot[v] = ;
if(i % prime[j] == ) break;
}
}
for(int i = ; ; i ++) {
int v = (i + ) * (i + ) * (i + ) - i * i * i;
if(v > ) break;
if(!isnot[v]) {
ans[v] = ;
}
}
for(int i = ; i <= ; i ++) ans[i] += ans[i - ];
} int main() {
int n;
init();
while(scanf("%d", &n) == ) {
if(n < ) printf("No Special Prime!\n");
else printf("%d\n", ans[n]);
}
return ;
}

【HDU】2866:Special Prime【数论】的更多相关文章

  1. HDU2866 Special Prime

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=2866 题意:在区间[2,L]内,有多少个素数p,满足方程有解. 分析: 原方程变为: n^(b-1) ...

  2. HDU 5839 Special Tetrahedron

    HDU 5839 Special Tetrahedron 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n ...

  3. 题解-hdu2866 Special Prime

    Problem hdu-2866 题意:求区间\([2,L]\)有多少素数\(p\)满足\(n^3+pn^2=m^3\),其中\(n,m\)属于任意整数 Solution 原式等价于\(n^2(p+n ...

  4. HDU 1005 Number Sequence(数论)

    HDU 1005 Number Sequence(数论) Problem Description: A number sequence is defined as follows:f(1) = 1, ...

  5. Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】

    Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...

  6. 七夕节 (HDU - 1215) 【简单数论】【找因数】

    七夕节 (HDU - 1215) [简单数论][找因数] 标签: 入门讲座题解 数论 题目描述 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们 ...

  7. Special Prime

    Special Prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  8. HDU 4569 Special equations(枚举+数论)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known int ...

  9. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. SpringCloud常用注解

    一 @EnableDiscoveryClient,@EnableEurekaClient的区别 SpringCLoud中的“Discovery Service”有多种实现,比如:eureka, con ...

  2. python基础--shutil模块

    shutil模块提供了大量的文件的高级操作. 特别针对文件拷贝和删除,主要功能为目录和文件操作以及压缩操作.对单个文件的操作也可参见os模块. 注意 即便是更高级别的文件复制函数(shutil.cop ...

  3. CNN Architectures(AlexNet,VGG,GoogleNet,ResNet,DenseNet)

    AlexNet (2012) The network had a very similar architecture as LeNet by Yann LeCun et al but was deep ...

  4. Java HashCode详解

    一.为什么要有Hash算法 Java中的集合有两类,一类是List,一类是Set.List内的元素是有序的,元素可以重复.Set元素无序,但元素不可重复.要想保证元素不重复,两个元素是否重复应该依据什 ...

  5. snmp常见操作

    常用snmp OID说明下面这些值可以手动连接进行获取数据: 用zabbix监控交换机和路由器需要一款能够获取网络设备OID的工具,可用getif来获得OID 也可以使用snmpwalk 配置交换机的 ...

  6. mongodb导入导出

    导出 mongoexport -d 数据库 -c 表名 -o 输出文件名 例:mongoexport -d Mongodb_DataManager -c Kujiale_Users -o Kujial ...

  7. 程序设计实习MOOC / 程序设计与算法(三)第一周测验

    作业题: 7. 填空(2分)简单的swap 通过码是 ( 请参考公告中的“关于编程作业的说明”完成编程作业(请注意,编程题都要求提交通过码,在openjudge上提交了程序并且通过以后,就可以下载到通 ...

  8. USACO 5.5 Hidden Password

    Hidden Password ACM South Eastern Europe -- 2003 Sometimes the programmers have very strange ways of ...

  9. Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2) E - Aquarium decoration 贪心 + 平衡树

    E - Aquarium decoration 枚举两个人都喜欢的个数,就能得到单个喜欢的个数,然后用平衡树维护前k大的和. #include<bits/stdc++.h> #define ...

  10. xmanager

    [root@upright91 run]# ./runBenchmark.sh updbtpcc.properties sqlTableCreates Exception in thread &quo ...