[转]OrCAD PSpice DIODE model parameter
1.从OrCAD PSpice help文档:
2.国外网站的相关介绍:
The DC characteristics of the diode are determined by the parameters IS, N, and the ohmic resistance RS. Charge storage effects are modeled by a transit time, TT, and a nonlinear depletion layer capacitance which is determined by the parameters CJO, VJ, and M. The temperature dependence of the saturation current is defined by the parameters EG, the band gap energy and XTI, the saturation current temperature exponent. The nominal temperature at which these parameters were measured is TNOM, which defaults to the circuit-wide value specified on the .OPTIONS control line. Reverse breakdown is modeled by an exponential increase in the reverse diode current and is determined by the parameters BV and IBV (both of which are positive numbers).
3. 国外网站关于PSpice 其它模型的参数介绍:如(三极管,达林顿管,场效应管,二极管)
Spice models
- Introduction
- The MOD model file
- The ZMODELS.LIB library file
- Model parameters and limitations
- Bipolars
- Darlingtons
- MOSFETs
- Diodes
- Further information
Introduction
Zetex have created Spice models for a range of semiconductor components. Models included are Schottky and varicap, high-performance bipolar (high current, low VCE(sat)), higher voltage bipolar, bipolar Darlington and MOSFET transistors. This range is continuously under review as new products are introduced and retrospective models are generated for existing products.
The Spice models are available in two formats:
- A separate Spice model text file for each Zetex device type for which a model is presently available. These can be accessed from the Product Quickfinder
- All the available Zetex device models are collected together into a single .LIB text file called ZMODELS.LIB.
A generic symbol library file is available called ZETEXM.SLB that enables Windows® versions of PSpice to use the Zetex spice models. Further information on the symbol library, including installation instructions will be found in the text file called ZETEXM.TXT
The MOD Model File
Each of these files is a Spice model for a single device. They can be loaded into your simulation simply by employing the Spice command <.include device_name.mod>. Only the device types specifically required by the circuit under simulation need be included in this way. All diode and bipolar transistor models are simple <.model> files. However, Darlington transistors and MOSFET models are multi-component subcircuits and as such are supplied as <.subckt> files.
The diode models should be included in circuit files using the normal Spice reference <Dnum Anode_node Cathode_node Device_name>.
Bipolar transistor models should be included using <Qnum Collector_node Base_node Emitter_node Device_name>.
All other models should be referenced as subcircuits i.e. in the form <Xnum Collector_node Base_node Emitter_node Device_name> for Darlington transistors, and <Xnum Drain_node Gate_node Source_node Device_name> for MOSFETs.
The ZMODELS.LIB Library File
Users may prefer to use the model library. This library is a collection of all Zetex Spice models exactly as they appear in the individual model files. By using the statement <.lib zmodels.lib>, Spice will be able to access any model within the library without the need for multiple <.include> statements.
Note:
All subcircuits, whether in the library or as individual model files use the same connection sequence as Spice for single element models, thus easing their use.
Model parameters and limitations
- Bipolars
- Darlingtons
- MOSFETs
- Diodes
Bipolars
All bipolar transistor and Darlington models are based on Spice's modified Gummel-Poon model. A typical model for a single transistor is shown as follows:
*Zetex FMMT493A Spice Model v1.0 Last Revised 30/3/06
*
.MODEL FMMT493A NPN IS =6E-14 NF =0.99 BF =1100 IKF=1.1
+NK=0.7 VAF=270 ISE=0.3E-14 NE =1.26 NR =0.98 BR =70 IKR=0.5
+VAR=27 ISC=1.2e-13 NC =1.2 RB =0.2 RE =0.08 RC =0.08 RCO=8
+GAMMA=5E-9 CJC=15.9E-12 MJC=0.4 VJC=0.51 CJE=108E-12
+MJE=0.35 VJE=0.7 TF =0.8E-9 TR =55e-9 XTB=1.4 QUASIMOD=1
*
In the bipolar model:
- IS and NF control Icbo and the value of Ic at medium bias levels.
- ISE and NE control the fall in hFE that occurs at low Ic.
- BF controls peak forward hFE and XTB controls how it varies with temperature.
- BR controls peak reverse hFE i.e. collector and emitter reversed.
- IKF and NK control the current and the rate at which hFE falls at high collector currents.
- IKR controls where reverse hFE falls at high emitter currents.
- ISC and NC controls the fall of reverse hFE at low currents.
- RC, RB and RE add series resistance to these device terminals.
- VAF controls the variation of collector current with voltage when the transistor is operated in its linear region.
- VAR is the reverse version of VAF.
- CJC, VJC and MJC control Ccb and how it varies with Vcb.
- CJE, VJE and MJE control Cbe Ccb and how it varies with Veb.
- TF controls Ft and switching speeds.
- TR controls switching storage times.
- RCO, GAMMA, QUASIMOD control the quasi-saturation region.
Some standard bipolar transistor Spice models may not include a parameter that allows BF, the hFE parameter, to vary with temperature. If XTB is absent it defaults to zero, e.g. no temperature dependence. If hFE temperature effects are of interest and XTB is not modeled then the following values may be used to provide an estimate or a starting point for further investigation:
Polarity XTB NPN 1.6 PNP 1.9
It is suggested that the appropriate datasheet hFE profile is examined, and a Spice test circuit created that simulates the device in question and generates a set of hFE curves. Two or three such iterations should normally be sufficient to define a value for XTB in each case. Please remember that these notes are only a rough guide as to the effect of model parameters. Also, many of the parameters are interdependent so adjusting one parameter can affect many device characteristics.
At Zetex, we have endeavored to make the models perform as closely to actual samples as possible but some compromises are forced which can result in simulation errors under some circumstances. The main areas of error observed so far have been:
- Spice is often over optimistic in the hFE a transistor will give when operated above its data sheet current ratings. This is particularly true for a high voltage transistor operated at a low collector-emitter voltage and quasi-saturation parameters RCO, GAMMA and QUASIMOD have been introduced to improve the models in this region.
- Spice can be pessimistic when predicting switching storage time when current is extracted from the base of a transistor to speed turn-off.
Darlingtons
These are subcircuits using a standard transistor model. A Darlington model is shown as follows:
*
*Zetex FZT605 Spice Model v1.0 Last revision 27/04/05
*
.SUBCKT FZT605 1 2 3
* C B E
Q1 1 2 4 SUB605
Q2 1 4 3 SUB605 3.46
*
.MODEL SUB605 NPN IS=4.8E-14 BF=170 etc.
.ENDS FZT605
*
*$
Note:
Because Zetex Darlingtons are monolithic, the two transistors used are identical in all respects other than size. (The number at the end of the Q2 line multiplies the size of the SUB605 transistor by 3.46 - the ratio of the areas of the input and output transistors for this device).
MOSFETs
None of Spice's standard MOSFET models fit the characteristics of trench or vertical MOSFETs too well. Consequently the models of MOSFET's supplied have been made using subcircuits that include additional components to improve simulation accuracy. A typical less complex MOSFET model is shown as follows:
*
*ZETEX ZXMN3A14F Spice Model v1.0 Last revision 31/5/06
*
.SUBCKT ZXMN3A14F 30 40 50
*------connections-------D-G-S
M1 6 2 5 5 Nmod L=1.16E-6 W=0.76
M2 5 2 5 6 Pmod L=1.3E-6 W=0.35
RG 4 2 4.5
RIN 2 5 1E12
RD 3 6 Rmod 0.04
RS 5 55 Rmod 0.015
RL 3 5 3E9
C1 2 5 8.5E-12
C2 3 4 3E-12
D1 5 3 Dbodymod
LD 3 30 0.5E-9
LG 4 40 1.0E-9
LS 55 50 1.0E-9
.MODEL Nmod NMOS (LEVEL=3 TOX=5.5E-8 NSUB=5E16 VTO=2.13
+KP=2.5E-5 NFS=2E11 KAPPA=0.06 UO=650 IS=1E-15 N=10)
.MODEL Pmod PMOS (LEVEL=3 TOX=5.5E-8 NSUB=1.5E16
+TPG=-1 IS=1E-15 N=10)
.MODEL Dbodymod D (IS=6E-13 RS=.025 IKF=0.1 TRS1=1.5e-3
+CJO=150e-12 BV=33 TT=12e-9)
.MODEL Rmod RES (TC1=2.8e-3 TC2=0.8E-5)
.ENDS ZXMN3A14F
*
*$
*
In the MOSFET model:
- L relates to a process parameter.
- W relates to a process parameter.
- TOX relates to a process parameter.
- NSUB relates to a process parameter.
- VTO defines Vgs(th).
- KP controls Gm.
- NFS fast surface state density.
- KAPPA saturation field factor.
- UO mobility.
- RS and RD add series terminal resistance with temperature characteristic modeled.
- IS and N suppress the behavior of the MOSFET model's default body diode.
- CGDO, derived from process related parameters, controls Crss.
- CGSO, derived from process related parameters, controls Ciss.
- CBD, derived from process related parameters, controls Coss.
In this trench MOSFET the NMOS models the walls of the trench and the PMOS models the bottom of the trench. Added to the Spice standard MOSFET models are a gate resistor to control switching speeds, gate source and drain-source resistors to control leakage, drain and source series resistance, a drain-source diode to accurately reflect the performance of the MOSFET's body diode and inductors to model inductance inside the package.
Recent MOSFET models mirror the performance of the real devices reasonably well in most areas. One area not covered well by the older less complex models is the way that Crss and Coss vary with drain-source voltage. Thus if the less complex models are used at a drain-source voltage well away from datasheet capacitance definition voltages and capacitance is critical, then the values used for CGSO and CGDO may need adjustment.
Diodes
The Tuner diode and Schottky Diode ranges use a standard Spice diode model and a typical file appears as follows:
*
*Zetex ZC830A Spice Model v1.0 Last Revised 4/3/92
*
.MODEL ZC830A D IS=5.355E-15 N=1.08 RS=0.1161 XTI=3
+ EG=1.11 CJO=19.15E-12 M=0.9001 VJ=2.164 FC=0.5
+ BV=45.1 IBV=51.74E-3 TT=129.8E-9
+ ISR=1.043E-12 NR=2.01
*
*NOTES: FOR RF OPERATION ADD PACKAGE INDUCTANCE 0F 2.5E-9H AND SET
*RS=0.68 FOR 2V, 0.60 FOR 5V, 0.52 FOR 10V OR 0.46 FOR 20V BIAS.
*
*$
*
In the diode model:
- IS controls forward and reverse current against voltage.
- N controls forward current against voltage.
- RS controls forward voltage at high current.
- CJO, M and VJ control variation of capacitance with voltage.
- BV and IBV control reverse breakdown characteristics.
- TT controls switching reverse recovery characteristics.
- ISR and NR control reverse biased leakage.
- EG controls barrier height.
- FC forward bias depletion capacitance coefficient.
For operation at RF (which would be the norm for a varicap or tuner diode) it is recommended that a 2.5nH series inductor be added as an extra circuit element to correct for the inherent package inductance, this value will change with package size.
Also for some models data is available to enable the RS parameter better model Q at voltages other than the specified condition.
(原文地址:http://hi.baidu.com/rdtech/item/fe0138ea7aa36af2e0a5d483)
[转]OrCAD PSpice DIODE model parameter的更多相关文章
- OrCAD PSpice仿真库模型
说明:本介绍包含了\capture\library\pspice和capture\library\pspice\advanls目录下所有库,但由于作者水平有限,介绍得也比较简单,有些说明可能不一定对. ...
- pspice介绍1(转载)
PSpice的主要功能及特点: OrCAD软件的主要组成包括:OrCAD/Capture CIS.OrCAD/Layout Plus.OrCAD/Express及OrCAD/PSpice.它们分别是: ...
- Cadence ORCAD CAPTURE元件库介绍
Cadence ORCAD CAPTURE元件库介绍 来源:Cadence 作者:ORCAD 发布时间:2007-07-08 发表评论 Cadence OrCAD Capture 具有快捷.通用的 ...
- cadence 16.6 Pspice 仿真步骤
从ADI官网下载后缀为 cir 的文件,AD8210 为例 进行仿真 1 打开 Cadence -> Release 16.6 -> PSpice Accessories -> Mo ...
- .net core mvc model填充过滤器
在程序开发中,我们可能经常遇到所有的数据库表有相同的属性和行为,比如需要记录数据的创建人员,创建时间,修改时间和修改人.如果在每个action中都加上这些信息,代码看着比较冗余,看着不那么优雅,于是考 ...
- Windows Phone 十一、MVVM模式
MVVM 模式介绍 模型-视图-视图模型 (MVVM) 是一种用来分离 UI 和非 UI 代码的应用设计模式 MVVM – 模型(Model) MVVM 中的 Model 与 MVC 中的一致,用于封 ...
- [专题论文阅读]【分布式DNN训练系统】 FireCaffe
FireCaffe Forrest N. Iandola FireCaffe: near-linear acceleration of deep neural network training on ...
- Nancy 学习-视图引擎 继续跨平台
前面一篇,讲解Nancy的基础,以及Nancy自宿主,现在开始学习视图引擎. Nancy 目前支持两种 一个是SSVE 一个是Razor.下面我们一起学习. The Super Simple View ...
- ArcGIS空间分析工具
1. 3D分析 1.1. 3D Features toolset 工具 工具 描述 3D Features toolset (3D 要素工具集) Add Z Information 添加 Z 信息 添 ...
随机推荐
- Android -- 拷贝assets下的资源文件到SD卡中(可以超过1M)
很多手机游戏,在安装APK之后都得需要下载相应的资源包,然后才能进入游戏. 有这样一个需求:就是游戏中需要的资源包打在APK内,随apk一起进行安装到手机中. 这样就不需要,在安装APK之后,去下载资 ...
- (转)[unity3d]easytouch的使用
对于移动平台上的RPG类的游戏,我们常用虚拟摇杆来控制人物角色的行走和一些行为,相信我们对它并不陌生,之前尝试了EasyTouch2.5,发现并没有最新版的3.1好用,2.5版本的对于自适应没有做的很 ...
- elasticSearch nested exist与missing查询
elasticSearch nested查询,简单意义上,你可以理解为,它不会被索引,只是被暂时隐藏起来,而查询的时候,开关就是使用nested query/filter去查询 下面我有一个例子,是查 ...
- 劣质代码评析——《写给大家看的C语言书(第2版)》附录B之21点程序(八)
[重构](续) 牌的表示: 一副牌有52张,可用一整数数组描述.但是由于在游戏过程中牌数在不断减少,所以用一表示剩余张数的整数和一整数数组共同描述.C99支持一种变量长度数组,但用在这里并没有什么特别 ...
- 调整UIPickerView高度
Advantages: Makes setFrame of UIPickerView behave like it should No transform code within your UIVie ...
- SQL 查询排名是第三位的人
MYSQL可以使用如下的用法: SELECT id FROM partner_broker_account_record ORDER BY id LIMIT 2, 1 在limit为2的基础上加1, ...
- js setInterval() 用法示例
Created by Marydon on 1.定义 语法:setInterval(param1,param2) param1 要调用的函数或要执行的代码串. param2 周期性调用param1 ...
- git工具 将源码clone到本地指定目录的三种方式
git工具 将源码clone到本地指定目录的三种方式 CreationTime--2018年7月27日15点34分 Author:Marydon 1.情景展示 运行git-bash.exe,输入命 ...
- 保护HTTP的安全
#如果没有严格的限制访问的权限,公司放在服务器上的重要文档就存在隐患,web需要有一些安全的http形式: #安全方法: #基本认证.摘要认证.报文完整性检查都是一些轻量级的方法,但还不够强大,下面介 ...
- 23、List集合
1.List List接口是Collection的子接口,用于定义线性表数据结构.List是可重复集 2.List自身定义的方法 List处理继承Collection方法外,自己还定义了其它方法,例如 ...