CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址

CCF CSP 201703-5 引水入城

问题描述

  MF城建立在一片高原上。由于城市唯一的水源是位于河谷地带的湖中,人们在坡地上修筑了一片网格状的抽水水管,以将湖水抽入城市。如下图所示:

  这片管网由 n 行 m 列节点(红色,图中 n = 5,m = 6),横向管道(紫色)和纵向管道(橙色)构成。
  行和列分别用 1 到 n 的整数和 1 到 m 的整数表示。第 1 行的任何一个节点均可以抽取湖水,湖水到达第 n 行的任何一个节点即算作引入了城市。
  除第一行和最后一行外,横向相邻或纵向相邻的两个节点之间一定有一段管道,每一段管道都有各自的最大的抽水速率,并需要根据情况选择抽水还是放水。对于纵向的管道(橙色),允许从上方向下方抽水或从下方向上方放水;如果从图中的上方向下方抽水,那么单位时间内能通过的水量不能超过管道的最大速率;如果从下方向上方放水,因为下方海拔较高,因此可以允许有任意大的水量。对于横向的管道(紫色),允许从左向右或从右向左抽水,不允许放水,两种情况下单位时间流过的水量都不能超过管道的最大速率。
  现在MF城市的水务负责人想知道,在已知每个管道单位时间容量的情况下,MF城每单位时间最多可以引入多少的湖水。

输入格式

  由于输入规模较大,我们采用伪随机生成的方式生成数据。
  每组数据仅一行包含 6 个非负整数 nmABQX0。其中,n 和 m 如前文所述,表示管网的大小,保证 2 ≤ nm ≤ 5000;保证 1 ≤ ABQX0 ≤ 109
  ABQX0 是数据生成的参数,我们用如下的方式定义一个数列 { Xi }:
  Xi+1 = ( AXi + Bmod Q, (i ≥ 0)
  我们将数列的第 1 项到第 (n-1)m 项作为纵向管道的单位时间容量,其中 X(s-1)m+t 表示第 s 行第 t 列的节点到第 s+1 行第 t 列管道单位时间的容量;将数列的第 (n-1)m+1 项到第 (n-1)m+(n-2)(m-1) 项(即接下来的 (n-2)(m-1) 项)作为横向管道的单位时间容量,其中 X(n-1)m+(s-2)(m-1)+t 表示第 s 行第 t 列的节点到第 s 行第 t+1 列管道单位时间的容量。

输出格式

  输出一行一个整数,表示MF城每单位时间可以引入的水量。
  注意计算过程中有些参数可能超过32位整型表示的最大值,请注意使用64位整型存储相应数据。

样例输入

3 3 10 3 19 7

样例输出

38

样例说明

  使用参数得到数列 { Xi }={ 7, 16, 11, 18, 12, 9, 17, 2, 4, … },按照输入格式可以得到每个管道的最大抽水量如下图所示:

  在标准答案中,单位时间可以引水 38 单位。所有纵向管道均向下抽水即可,不需要横向管道抽水,也不需要向上放水。

样例输入

2 5 595829232 749238243 603779819 532737791

样例输出

1029036148

样例输入

5 2 634932890 335818535 550589587 977780683

样例输出

192923706

样例输入

5 5 695192542 779962396 647834146 157661239

样例输出

1449991168

评测用例规模与约定

  共有10组评测数据,每组数据的参数规模如下所示:

测试点编号 n m
1 =2 =1000
2 =1000 =2
3 =1000 =2
4 =5 =5
5 =10 =10
6 =100 =100
7 =500 =500
8 =1000 =1000
9 =2000 =2000
10 =5000 =5000

解析

这是一个最大流的问题,湖是源,城市是汇。

下面实现了ford-fulkerson算法,只能通过50%的数据。

有更好的方法求告知!

代码

C++

#include <iostream>
#include <vector>
#include <queue>
#include <utility>
#include <climits>
using namespace std; long long A, B, Q, X;
int numVertex; int nextRandom() {
X = (A * X + B) % Q;
return X;
} struct Edge {
int v; // vertex
int w; // weight
Edge(int v_, int w_) : v(v_), w(w_) {}
}; bool bfs(vector<vector<Edge> > &rgraph, int s, int t, vector<pair<int,int> > &parents) {
queue<int> q;
vector<bool> visited(numVertex);
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i=; i<rgraph[u].size(); i++) {
int v = rgraph[u][i].v;
if(!visited[v] && rgraph[u][i].w>) {
visited[v] = true;
parents[v] = make_pair(u,i);
q.push(v);
if(v == t) return true;
} }
}
return false;
} long long fordFulkerson(vector<vector<Edge> > &rgraph, int s, int t) {
long long maxFlow = ;
vector<pair<int,int> > parents(numVertex);
while(bfs(rgraph, , , parents)) {
int pathFlow = INT_MAX;
for(int v=t; v!=s; ) {
int u=parents[v].first; int ui = parents[v].second;
pathFlow = min(pathFlow, rgraph[u][ui].w);
v = u;
}
maxFlow += pathFlow;
// cout << pathFlow << " " << maxFlow << endl;
for(int v=t; v!=s; ) {
int u = parents[v].first;
int ui = parents[v].second;
if(rgraph[u][ui].w!=INT_MAX) rgraph[u][ui].w -= pathFlow;
int vi = -;
for(int i=; i<rgraph[v].size(); i++) {
if(rgraph[v][i].v == u) {
vi = i;
}
}
if(vi!=- && rgraph[v][vi].w!=INT_MAX) rgraph[v][vi].w += pathFlow;
v = u;
}
}
return maxFlow;
} int main() {
int N, M;
cin >> N >> M >> A >> B >> Q >> X;
numVertex = N * M + ;
// 0:source, 1:sink,
vector<vector<Edge> > graph(numVertex, vector<Edge>()); int offset = ;
// construct graph
for(int n=; n<N-; n++) {
for(int m=; m<M; m++) {
int from = n*M+m+offset;
int to = from+M;
nextRandom();
graph[from].push_back(Edge(to, X));
graph[to].push_back(Edge(from, INT_MAX));
}
} for(int m=; m<M; m++) {
int from = ;
int to = m+offset;
graph[from].push_back(Edge(to, INT_MAX));
} for(int m=; m<M; m++) {
int from = (N-)*M+m+offset;
int to = ;
graph[from].push_back(Edge(to, INT_MAX));
} long long maxFlow = ; for(int n=; n<N-; n++) {
for(int m=; m<M-; m++) {
int from = n*M+m+offset;
int to = from+;
nextRandom();
graph[from].push_back(Edge(to, X));
graph[to].push_back(Edge(from, X));
}
} maxFlow += fordFulkerson(graph, , ); cout << maxFlow;
}

CCF CSP 201703-5 引水入城(50分)的更多相关文章

  1. CCF(引水入城:60分):最大流+ISAP算法

    引水入城 201703-5 这从题目分析来看很像最大流的问题,只需要增加一个超级源点和一个超级汇点就可以按照题意连边再跑最大流算法. 因为数据量太大了,肯定会超时.但是没有想到可行的解决方法. #in ...

  2. Codevs 1066 引水入城 2010年NOIP全国联赛提高组

    1066 引水入城 2010年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 在一个遥远的国度 ...

  3. CODEVS 1066/洛谷 P1514引水入城

    1066 引水入城 2010年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 在一个遥远的国 ...

  4. vijos p1777 引水入城(bfs+贪心)

    引水入城   描述 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个N行M列的矩形,其中每个格子都代表一座城市,每座城市都有一个海拔高度. 为了使 ...

  5. 521. [NOIP2010] 引水入城 cogs

    521. [NOIP2010] 引水入城 ★★★   输入文件:flow.in   输出文件:flow.out   简单对比时间限制:1 s   内存限制:128 MB 在一个遥远的国度,一侧是风景秀 ...

  6. 引水入城 2010年NOIP全国联赛提高组(bfs+贪心)

    1066 引水入城 2010年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description 在一个遥远 ...

  7. NOIP2010 引水入城

    4引水入城 题目描述 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个N 行M 列的矩形,如上图所示,其中每个格子都代表一座城市,每座城市都有一个 ...

  8. Luogu 1514 引水入城 (搜索,动态规划)

    Luogu 1514 引水入城 (搜索,动态规划) Description 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个N行M列的矩形,如上图 ...

  9. 洛谷P1514 引水入城

    洛谷P1514 引水入城 原题链接 一道好题...细节真多 第一次提交90分,然后就GG了,不知从何改起 其实比较简单吧... 首先,一个点的水流向最后一排,一定可以形成一个区间. 不行的话肯定GG ...

随机推荐

  1. php 中 FastCGI与cgi的关系,何为fastcgi

    FastCGI是语言无关的.可伸缩架构的CGI开放扩展,其主要行为是将CGI解释器进程保持 在内存中并因此获得较高的性能.众所周知,CGI解释器的反复加载是CGI性能低下的主要原因, 如果CGI解释器 ...

  2. 用Python来进行词频统计

    # 把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号 def words(text): return re.findall('[a-z]+', text.lower()) def ...

  3. 【学习DIV+CSS】1. 你必须知道的三个知识

    1. DIV+CSS的叫法不够严谨 我们以前做页面布局的时候大多是用Table,很多人称之为“Table+CSS”,而现在比较流行的是DIV布局,所以称之为“DIV+CSS”.听起来是挺合理的,岂不知 ...

  4. 推荐一款超级漂亮的HTML5 CSS3的图片轮播器

    最近在学习HTML5和CSS3,印象最深的是CSS3的动画功能,不仅有浏览器原生支持,执行效率高,而且免去在js中自己管理timer. 本来想写一个图片轮播器练练手,结果在网上发现一个国人写的开源的图 ...

  5. 微服务深入浅出(10)-- Docker

    概念 1.Docker引擎 一个运行在服务器上的后台进程 2.Docker客户端 分为两种:CLI和RestAPI,与Docker引擎交互 3.Docker镜像 类似于我们使用的光盘,将程序打包到Do ...

  6. ConcrrentSkipListMap介绍和原理分析

    一.前言: JDK为我们提供了很多Map接口的实现,使得我们可以方便地处理Key-Value的数据结构. 当我们希望快速存取<Key, Value>键值对时我们可以使用HashMap. 当 ...

  7. C语言编写守护进程

    概念 守护进程(daemon)是一种运行在后台的一种特殊的进程,它独立于控制终端并且周期性的执行某种任务或等待处理某些发生的事件.由于在Linux中,每个系统与用户进行交流的界面成为终端,每一个从此终 ...

  8. 用threading和Queue模块实现多线程的端口扫描器

    一.Queue模块基础 q = Queue.Queue()    q.qsize()           返回队列的大小  q.empty()         如果队列为空,返回True,反之Fals ...

  9. 列表函数&方法

    列表(list)的基本操作,方法及属性.

  10. 29、HashSet简介

    Set的特点 Set里面存储的元素不能重复,没有索引,存取顺序不一致. package com.monkey1024.set; import java.util.HashSet; /** * Set的 ...