matplotlib.pyplot是一组命令样式函数,使matplotlib像MATLAB一样工作。每个pyplot函数都会对图形进行一些更改:例如,创建图形,在图形中创建绘图区域,在绘图区域中绘制一些线条,使用标签装饰图形等。

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()

您可能想知道为什么x轴的范围是0-3,y轴的范围是1-4。如果为plot()命令提供单个列表或数组 ,matplotlib假定它是一系列y值,并自动为您生成x值。由于python范围以0开头,因此默认的x向量与y的长度相同,但以0开头。因此x数据为 [0,1,2,3]

import matplotlib.pyplot as plt
import numpy as np # evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2) # red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

import matplotlib.pyplot as plt
import numpy as np data = {'a': np.arange(50),
'c': np.random.randint(0, 50, 50),
'd': np.random.randn(50)}
data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100 plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')
plt.ylabel('entry b')
plt.show()

用分类变量绘图

import matplotlib.pyplot as plt
import numpy as np names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100] plt.figure(figsize=(9, 3)) plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()

使用多个图形和轴

import matplotlib.pyplot as plt
import numpy as np def f(t):
return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02) plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k') plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

使用文本

import matplotlib.pyplot as plt
import numpy as np mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000) # the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75) plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

对数和其他非线性轴

import matplotlib.pyplot as plt
import numpy as np from matplotlib.ticker import NullFormatter # useful for `logit` scale # Fixing random state for reproducibility
np.random.seed(19680801) # make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y)) # plot with various axes scales
plt.figure() # linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True) # log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True) # symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')
plt.grid(True) # logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Format the minor tick labels of the y-axis into empty strings with
# `NullFormatter`, to avoid cumbering the axis with too many labels.
plt.gca().yaxis.set_minor_formatter(NullFormatter())
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35) plt.show()

小白学Python——Matplotlib 学习(2):pyplot 画图的更多相关文章

  1. 小白学Python——Matplotlib 学习(1)

    众所周知,通过数据绘图,我们可以将枯燥的数字转换成容易被人们接受的图表,从而让人留下更加深刻的印象.而大多数编程语言都有自己的绘图工具,matplotlib就是基于Python的绘图工具包,使用它我们 ...

  2. 小白学Python——Matplotlib 学习(3) 函数图形

    import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1,1,50) y = 2*x + 1 plt.figure() ...

  3. 小白学 Python 数据分析(16):Matplotlib(一)坐标系

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  4. 小白学 Python 数据分析(17):Matplotlib(二)基础操作

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  5. 小白学 Python 数据分析(18):Matplotlib(三)常用图表(上)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  6. 小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  7. 小白学 Python 数据分析(15):数据可视化概述

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  8. 小白学 Python 数据分析(20):pyecharts 概述

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  9. 小白学 Python 数据分析(21):pyecharts 好玩的图表(系列终篇)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

随机推荐

  1. Java面试之框架篇(9)

    spring现在无疑是Java中最火的框架,使用范围广,几乎每个公司面试都会涉及spring和数据库,你可以对Struts不熟悉,但一定不能表现出对spring不了解.第九篇赢在面试全篇介绍sprin ...

  2. mysql jdbcTemplate访问

    String sql = "select * from xxx_photo_info where user_id in (:userIds)"; userIds从dao传过来时必须 ...

  3. Shell中的特殊字符(三)

    一 通配符 [root@192 test]# touch abc [root@192 test]# touch abcd [root@192 test]# touch 012 [root@192 te ...

  4. go语言系列--输出正弦函数

    实验所用到的标准库和包 库与包之间的理解可以类比成:数据库种的库和表 库名 作用 image 常见图形格式的访问及生成 log 日志记录库 math 数学库 os 操作系统平台不依赖平台操作封装 查看 ...

  5. Jenkins部署从节点

    由于jenkins上承载项目太多,需要专门的节点来执行需要构建的操作. 参考:https://www.cnblogs.com/lxs1314/p/7551309.html job仅使用绑定的slave ...

  6. springboot(六) Maven打包引入本地jar包

       springboot Maven打包引入本地jar包 最近在做项目的时候,有一些jar包不存在maven的依赖库中,所以需要自己引入本地jar包来达到需求,那么我们该如何去将本地的jar包引入s ...

  7. Spring Cloud Stream教程(五)编程模型

    本节介绍Spring Cloud Stream的编程模型.Spring Cloud Stream提供了许多预定义的注释,用于声明绑定的输入和输出通道,以及如何收听频道. 声明和绑定频道 触发绑定@En ...

  8. 《数据结构(C语言)》苏小红 课本案例

    期末了,赶紧复习一波,手打一份书上的代码以便随时查阅 第二章: //顺序表存储结构 #define MAXSIZE 100 typedef struct { Elemtype *elemt; int ...

  9. [design pattern](3) Dectorator

    前言 很久没有写关于设计模式的博客了,实在是没有太多的精力去写.但个人觉得设计模式在我们的日常开发中还是挺重要的,它提高了软件的可维护性.因此还是有必要坚持学习设计模式,写博客主要是为了加深我对设计模 ...

  10. EasyUI datagrid动态加载json数据

    最近做一个项目,要求是两张张表可能查找出10多种不同的结果集. 如果想只用一个表格就把全部的结果不同的显示出来那么就肯定不同使用固定的字段名字,要通过动态加载后台返回来的数据把它显示出来就必须动态加载 ...