matplotlib.pyplot是一组命令样式函数,使matplotlib像MATLAB一样工作。每个pyplot函数都会对图形进行一些更改:例如,创建图形,在图形中创建绘图区域,在绘图区域中绘制一些线条,使用标签装饰图形等。

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()

您可能想知道为什么x轴的范围是0-3,y轴的范围是1-4。如果为plot()命令提供单个列表或数组 ,matplotlib假定它是一系列y值,并自动为您生成x值。由于python范围以0开头,因此默认的x向量与y的长度相同,但以0开头。因此x数据为 [0,1,2,3]

import matplotlib.pyplot as plt
import numpy as np # evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2) # red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

import matplotlib.pyplot as plt
import numpy as np data = {'a': np.arange(50),
'c': np.random.randint(0, 50, 50),
'd': np.random.randn(50)}
data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100 plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')
plt.ylabel('entry b')
plt.show()

用分类变量绘图

import matplotlib.pyplot as plt
import numpy as np names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100] plt.figure(figsize=(9, 3)) plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()

使用多个图形和轴

import matplotlib.pyplot as plt
import numpy as np def f(t):
return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02) plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k') plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

使用文本

import matplotlib.pyplot as plt
import numpy as np mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000) # the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75) plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

对数和其他非线性轴

import matplotlib.pyplot as plt
import numpy as np from matplotlib.ticker import NullFormatter # useful for `logit` scale # Fixing random state for reproducibility
np.random.seed(19680801) # make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y)) # plot with various axes scales
plt.figure() # linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True) # log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True) # symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')
plt.grid(True) # logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Format the minor tick labels of the y-axis into empty strings with
# `NullFormatter`, to avoid cumbering the axis with too many labels.
plt.gca().yaxis.set_minor_formatter(NullFormatter())
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35) plt.show()

小白学Python——Matplotlib 学习(2):pyplot 画图的更多相关文章

  1. 小白学Python——Matplotlib 学习(1)

    众所周知,通过数据绘图,我们可以将枯燥的数字转换成容易被人们接受的图表,从而让人留下更加深刻的印象.而大多数编程语言都有自己的绘图工具,matplotlib就是基于Python的绘图工具包,使用它我们 ...

  2. 小白学Python——Matplotlib 学习(3) 函数图形

    import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1,1,50) y = 2*x + 1 plt.figure() ...

  3. 小白学 Python 数据分析(16):Matplotlib(一)坐标系

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  4. 小白学 Python 数据分析(17):Matplotlib(二)基础操作

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  5. 小白学 Python 数据分析(18):Matplotlib(三)常用图表(上)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  6. 小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  7. 小白学 Python 数据分析(15):数据可视化概述

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  8. 小白学 Python 数据分析(20):pyecharts 概述

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  9. 小白学 Python 数据分析(21):pyecharts 好玩的图表(系列终篇)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

随机推荐

  1. mysql分组排序加序号

    参照https://www.cnblogs.com/CharlieLau/p/6737243.html 一.需求 新加一个Sort 字段,初始值为1,按照parentID分组添加sort值. 根据原数 ...

  2. ubuntu 微信安装

    安装过程: 下载最新版本tar.gz压缩包https://github.com/geeeeeeeeek/electronic-wechat/releases/download/V2.0/linux-x ...

  3. vs中free内存失败

    关于vs中free内存失败: 主要有以下两个原因: 1. 函数参数调用写错.特别是传指针进去的时候,若形参与实参不对应,会出错. 2. 内存分配不够,这个原因主要是因为程序中访问到了内存外的地址,即使 ...

  4. box-shadow inset

    安卓支持,ios不支持:box-shadow: 0px 0px 2px inset rgba(0,0,0,0.08); 安卓,ios都支持:box-shadow: inset 0px 0px 2px ...

  5. Hive函数介绍

    一些函数不太会,查了些资料,分享一下 Hive已定义函数介绍: 1.字符串长度函数:length 语法: length(string A)返回值: int举例:[sql] view plain cop ...

  6. wannafly 挑战赛8 E 小G的项链(manecher)

    链接:https://www.nowcoder.com/acm/contest/57/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit ...

  7. [CSP-S模拟测试]:数对(线段树优化DP)

    题目传送门(内部题96) 输入格式 第一行一个整数$n$,接下来$n$行每行三个整数$a_i,b_i,w_i$. 输出格式 一行一个整数表示最大权值和. 样例 样例输入: 54 4 12 3 31 5 ...

  8. CDH安装时,部分节点不受管控

    解决方案: /opt/cm-5.12.0/etc/init.d/cloudera-scm-agent stop cd /opt/cm-5.12.0/lib/cloudera-scm-agent/ rm ...

  9. hdu5988(费用流,对数相乘做加法)

    题意:一个网络流的图,有n个点,从1~n,然后m条边,每个点有两个值,一个是人的数量si一个是饭的数量bi.每条m边有容量ci,还有走上去可能踩断电线的概率pi(第一次踩上去没有事,之后都要p概率). ...

  10. pytorch之Resize()函数

    Resize函数用于对PIL图像的预处理,它的包在: from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize ...