[LOJ3120][CTS2019|CTSC2019]珍珠:生成函数+NTT
分析
容易发现\(D \leq n - 2m\)时,任意数列都满足要求,直接判掉,下文所讨论的均为\(D > n - 2m\)的情况。
考虑把两个数列合并,显然可以认为是两个带标号对象的合并,可以使用EGF相乘。
我们可以枚举有\(k\)个数出现了奇数次,答案即为:
ans=&n!\sum_{k=0}^{n-2m}(EVEN(x)+yODD(x))^D[x^n][y^k]\\
=&n!\sum_{k=0}^{n-2m}(\frac{e^x+e^{-x}}{2}+y\frac{e^x-e^{-x}}{2})^D[x^n][y^k]\\
=&n!\frac{1}{2^D}\sum_{k=0}^{n-2m}((e^x+e^{-x})+y(e^x-e^{-x}))^D[x^n][y^k]\\
=&n!\frac{1}{2^D}\sum_{k=0}^{n-2m}(e^x(1+y)+e^{-x}(1-y))^D[x^n][y^k]\\
=&n!\frac{1}{2^D}\sum_{k=0}^{n-2m}\sum_{i=0}^{D}\binom{D}{i}e^{(2i-D)x}(1+y)^i(1-y)^{D-i}[x^n][y^k]\\
=&\frac{1}{2^D}\sum_{k=0}^{n-2m}\sum_{i=0}^{D}\binom{D}{i}(2i-D)^n(1+y)^i(1-y)^{D-i}[y^k]\\
=&\frac{1}{2^D}\sum_{i=0}^{D}\binom{D}{i}(2i-D)^n\sum_{k=0}^{n-2m}(1+y)^i(1-y)^{D-i}[y^k]\\
\end{aligned}
\]
(以下部分参考了bestfy的博客。)
现在我们需要对\(\forall i \in [0,D]\),求出\(f(i)=\sum_{k=0}^{n-2m}(1+y)^i(1-y)^{D-i}[y^k]\)。
当\(i < D\)时,
f(i)=&\sum_{k=0}^{n-2m}(1+y)^i(1-y)^{D-i}[y^k]\\
=&(1+y)^i(1-y)^{D-i}(1+y+y^2+...)[y^{n-2m}]\\
=&(1+y)^i(1-y)^{D-i-1}[y^{n-2m}]\\
=&\sum_{j=0}^{n-2m}\binom{i}{j}\binom{D-i-1}{n-2m-j}(-1)^{n-2m-j}\\
\end{aligned}
\]
上式可以化成卷积的形式然后NTT。
当\(i = D\)时,
\]
因为\(D>n-2m\),所以这个东西可以直接暴力算。
代码
#include <bits/stdc++.h>
#define rin(i,a,b) for(int i=(a);i<=(b);++i)
#define irin(i,a,b) for(int i=(a);i>=(b);--i)
#define trav(i,a) for(int i=head[a];i;i=e[i].nxt)
#define Size(a) (int)a.size()
#define pb push_back
#define mkpr std::make_pair
#define fi first
#define se second
#define lowbit(a) ((a)&(-(a)))
typedef long long LL;
using std::cerr;
using std::endl;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int MAXN=100005;
const int MOD=998244353;
const int NTT=1048576;
const int G=3;
const int INVG=332748118;
int D,N,M,n,m,len,rev[MAXN<<2];
int fac[MAXN],invf[MAXN];
int w[NTT+5],iw[NTT+5];
int A[MAXN<<2],B[MAXN<<2];
inline int qpow(int x,int y){
int ret=1,tt=x%MOD;
while(y){
if(y&1)ret=1ll*ret*tt%MOD;
tt=1ll*tt*tt%MOD;
y>>=1;
}
return ret;
}
inline int binom(int n,int m){
if(n<0||m<0||n<m)return 0;
return 1ll*fac[n]*invf[n-m]%MOD*invf[m]%MOD;
}
void ntt(int *c,int dft){
rin(i,0,n-1)if(i<rev[i])std::swap(c[i],c[rev[i]]);
for(int mid=1;mid<n;mid<<=1){
int r=(mid<<1),u=NTT/r;
for(int l=0;l<n;l+=r){
int v=0;
for(int i=0;i<mid;++i,v+=u){
int x=c[l+i],y=1ll*c[l+mid+i]*(dft>0?w[v]:iw[v])%MOD;
c[l+i]=x+y<MOD?x+y:x+y-MOD;
c[l+mid+i]=x-y>=0?x-y:x-y+MOD;
}
}
}
if(dft<0){
int invn=qpow(n,MOD-2);
rin(i,0,n-1)c[i]=1ll*c[i]*invn%MOD;
}
}
void prepare(){
for(n=1,len=0;n<=m;n<<=1,++len);
rin(i,1,n-1)rev[i]=((rev[i>>1]>>1)|((i&1)<<(len-1)));
}
void init(int N){
fac[0]=1;
rin(i,1,N)fac[i]=1ll*fac[i-1]*i%MOD;
invf[N]=qpow(fac[N],MOD-2);
irin(i,N-1,0)invf[i]=1ll*invf[i+1]*(i+1)%MOD;
w[0]=iw[0]=1;
w[1]=qpow(G,(MOD-1)/NTT),iw[1]=qpow(INVG,(MOD-1)/NTT);
rin(i,2,NTT-1){
w[i]=1ll*w[i-1]*w[1]%MOD;
iw[i]=1ll*iw[i-1]*iw[1]%MOD;
}
}
int main(){
D=read(),N=read(),M=read();int S=N-2*M;
if(M>N/2){printf("0\n");return 0;}
if(D<=S){printf("%d\n",qpow(D,N));return 0;}
init(D);
rin(i,0,S)A[i]=1ll*(((S-i)&1)?MOD-1:1)*invf[i]%MOD*invf[S-i]%MOD;
rin(i,0,D)if(D-1-S-i>=0)B[i]=1ll*invf[i]*invf[D-1-S-i]%MOD;
m=S+D;prepare();
ntt(A,1);ntt(B,1);
rin(i,0,n-1)A[i]=1ll*A[i]*B[i]%MOD;
ntt(A,-1);
int ans=0;
rin(i,0,D){
if(D-1-i>=0){
A[i]=1ll*A[i]*fac[i]%MOD*fac[D-i-1]%MOD;
ans=(ans+1ll*binom(D,i)*qpow(2*i-D,N)%MOD*A[i])%MOD;
}
else{
int temp=0;
rin(j,0,S)temp=(temp+binom(D,j))%MOD;
ans=(ans+1ll*binom(D,i)*qpow(2*i-D,N)%MOD*temp)%MOD;
}
}
printf("%lld\n",(1ll*ans*qpow(qpow(2,D),MOD-2)%MOD+MOD)%MOD);
return 0;
}
[LOJ3120][CTS2019|CTSC2019]珍珠:生成函数+NTT的更多相关文章
- 【CTS2019】珍珠(生成函数)
[CTS2019]珍珠(生成函数) 题面 LOJ 洛谷 题解 lun题可海星. 首先一个大暴力\(sb\)的\(dp\)是设\(f[i][S]\)表示当前考虑完了前\(i\)个珍珠,\(S\)集合中这 ...
- 「CTS2019」珍珠
「CTS2019」珍珠 解题思路 看了好多博客才会,问题即要求有多少种方案满足数量为奇数的变量数 \(\leq n-2m\).考虑容斥,令 \(F(k)\) 为恰好有 \(n\) 个变量数量为奇数的方 ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- 「CTS2019 | CTSC2019」氪金手游 解题报告
「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中 ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
- Solution -「CTS2019」珍珠
题目 luogu. 题解 先 % 兔.同为兔子为什么小粉兔辣么强qwq. 本文大体跟随小粉兔的题解的思路,并为像我一样多项式超 poor 的读者作了很详细的解释.如果题解界面公式出现问题,可以 ...
- LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT
传送门 题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数.问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\( ...
- [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)
这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...
- loj3120 「CTS2019 | CTSC2019」珍珠
link .... 感觉自己太颓废了....还是来更题解吧...[话说写博客会不会涨 rp 啊 qaq ? 题意: 有 n 个物品,每个都有一个 [1,D] 中随机的颜色,相同颜色的两个物品可以配对. ...
随机推荐
- java解析json字符串详解(两种方法)
一.使用JSONObject来解析JSON数据官方提供的,所以不需要导入第三方jar包:直接上代码,如下 private void parseJSONWithJSONObject(String Jso ...
- # Doing homework again(贪心)
# Doing homework again(贪心) 题目链接:Click here~~ 题意: 有 n 门作业,每门作业都有自己的截止期限,当超过截止期限还没有完成作业,就会扣掉相应的分数.问如何才 ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- 封装CURD
<?php include ('ft.php'); $db=Danli::show(); //查询 //$re=$db->table('stree')->where(['name'= ...
- python_0基础开始_day09
第九节 1,函数初始 s = "qwertyuiop"n = 0for i in s: n += 1print(n)lst = [1,2,3,4,5]n = 0for i ...
- button标签与input type=button标签使用的差异
button标签和input type=button标签都是html文档中用来表示按钮属性的元素,不过他们在布局和实际使用功能中存在一些差异. 下面将项目中遇到的一些总结如下: 1.属性和布局差异. ...
- POJ题解Sorting It All Out-传递丢包+倍增
题目链接: http://poj.org/problem?id=1094 题目大意(直接从谷歌翻译上复制下来的): 描述 不同值的递增排序顺序是其中使用某种形式的小于运算符来将元素从最小到最大排序的顺 ...
- php过滤微信昵称中的表情
function filterNickname($nickname) { $nickname = preg_replace('/[\x{1F600}-\x{1F64F}]/u', '', $nickn ...
- FTP服务器上传,下载文件
public class FtpUtil { /** * * @param host FTP服务器地址 * @param port FTP服务器端口 * @param username FTP登录账号 ...
- GitFlow入门
1-概述 2-GitFLow分支介绍 2.1-master 分支 2.2-develop 分支 2.3-feature 分支 2.4-release 分支 2.5-hotfix 分支 3-GitFlo ...