Description

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

Input

第1行:N, M  (0<=N<=100, 0<=M<=500)
      第2行:W1, W2, ... Wi, ..., Wn (0<=Wi<=M )
      第3行:V1, V2, ..., Vi, ..., Vn  (0<=Vi<=1000 )
      第4行:D1, D2, ..., Di, ..., Dn(0<=Di<=N, Di≠i )

Output

一个整数,代表最大价值。

把环缩掉,跑一个树形背包即可

#include<bits/stdc++.h>
using namespace std;
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 600
int edges,n,m;
int w[maxn],cost[maxn],hd[maxn],to[maxn<<1],nex[maxn<<1],val[maxn];
void addedge(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
map<int,int>M[maxn];
int num,scc;
vector<int>G[maxn];
stack<int>S;
int dfn[maxn],low[maxn],W[maxn],V[maxn],idx[maxn],vis[maxn];
void tarjan(int u)
{
low[u]=dfn[u]=++scc,vis[u]=1;
S.push(u);
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(!vis[v]) tarjan(v), low[u]=min(low[u],low[v]);
else if(vis[v]==1) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++num;
for(;;)
{
int x=S.top(); S.pop();
vis[x]=-1;
W[num]+=cost[x], V[num]+=val[x], idx[x]=num;
if(x==u) break;
}
}
}
int f[maxn][1200],tmp[maxn][1200],du[maxn];
void solve(int x)
{
for(int i=W[x];i<=m;++i) f[x][i]=V[x];
for(int i=0;i<G[x].size();++i)
{
int v=G[x][i];
solve(v);
for(int j=m-W[x];j>=0;--j)
{
for(int q=0;q<=j;++q)
{
f[x][W[x]+j]=max(f[x][W[x]+j], f[x][W[x]+j-q] + f[v][q]);
}
}
}
}
int main()
{
int i,j;
// setIO("input");
scanf("%d%d",&n,&m);
for(i=1;i<=n;++i) scanf("%d",&cost[i]);
for(i=1;i<=n;++i) scanf("%d",&val[i]);
for(i=1;i<=n;++i)
{
int x;
scanf("%d",&x);
addedge(x,i);
}
for(i=1;i<=n;++i) if(!vis[i]) tarjan(i);
for(i=1;i<=n;++i)
{
int cur=idx[i];
for(j=hd[i];j;j=nex[j])
{
int v=idx[to[j]];
if(cur!=v&&!M[cur][v])
{
M[cur][v]=1;
G[cur].push_back(v);
++du[v];
}
}
}
for(i=1;i<=num;++i) if(du[i]==0) G[0].push_back(i);
solve(0);
printf("%d\n",f[0][m]);
return 0;
}

  

BZOJ 2427: [HAOI2010]软件安装 tarjan + 树形背包的更多相关文章

  1. BZOJ 2427 [HAOI2010]软件安装 | 这道树形背包裸题严谨地证明了我的菜

    传送门 BZOJ 2427 题解 Tarjan把环缩成点,然后跑树形背包即可. 我用的树形背包是DFS序上搞的那种. 要注意dp数组初始化成-INF! 要注意dp顺推的时候也不要忘记看数组是否越界! ...

  2. bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp

    [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2029  Solved: 811[Submit][Status][Dis ...

  3. 【BZOJ2427】[HAOI2010]软件安装 Tarjan+树形背包

    [BZOJ2427][HAOI2010]软件安装 Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为 ...

  4. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

  5. BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包

    分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...

  6. HAOI2010软件安装(树形背包)

    HAOI2010软件安装(树形背包) 题意 有n个物品,每个物品最多会依赖一个物品,但一个物品可以依赖于一个不独立(依赖于其它物品)的物品,且可能有多个物品依赖一个物品,并且依赖关系可能形成一个环.现 ...

  7. [HAOI2010]软件安装(树形背包,tarjan缩点)

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  8. bzoj 2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  9. luogu P2515 [HAOI2010]软件安装 |Tarjan+树上背包

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为MM计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但 ...

随机推荐

  1. FiddlerCore修改http返回结果

    static void FiddlerApplication_BeforeRequest(Session oSession) { oSession.bBufferResponse = true; } ...

  2. 使用TestNG框架测试用例执行顺序问题

    既然是讨论执行顺序问题,那么用例肯定是批量执行的,批量执行的方法有mvn test.直接运行testng.xml文件,其中直接运行testng.xml文件的效果与pom文件中配置执行testng.xm ...

  3. 【HANA系列】SAP HANA Studio出现"Fetching Children..."问题

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP HANA Studio出 ...

  4. Eclipse."Courier New"字体

    1.Win 7 下eclipse添加Courier New字体 - 彦帅的博客.html(https://blog.csdn.net/theblackbeard/article/details/525 ...

  5. python+selenium上传文件——input标签

    我们要区分出上传按钮的种类,大体上可以分为两种: 第一种普通上传:将本地文件路径作为一个值,放在input标签中,通过form表单将这个值提交给服务器: 第二种插件上传:是通过Flash.JavaSc ...

  6. [Python3] 002 Python3 中常用的命名规则

    目录 1. 什么可以用来命名? 1.1 老三样: 字母.数字.下划线 1.2 其他 2. 什么不能用来命名? Python3 中的"关键字" 3. 命名"小贴士" ...

  7. 前端导出excel文件

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. freemarker如何在url中传递中文参数

    例如:http://www.map512.cn/findPOI.do?key=南门如果不转码,request.getParameter("key")返回的是乱码,在jsp中,我们一 ...

  9. mktemp - 产生唯一的临时文件名

    总览 (SYNOPSIS) mktemp [-q ] [-u ] template 描述 (DESCRIPTION) mktemp 根据 给定的 文件名模板, 改变 其中的 一部分, 从而 生成 临时 ...

  10. hashlib模块和logging模块

    hashlib Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值: import hashlib m=hashli ...