AT2705 Yes or No(组合数学)
解题思路
首先将这个模型放到坐标轴上,\(x\)轴表示\(1\),\(y\)轴表示\(0\)。问题就转化成了从\((0,0)\)走到\((n,m)\),每次可以猜测向\(x\)轴或向\(y\)轴,而实际也有一条路线,求猜中的个数的期望。假设\(n<m\)首先如果一直猜\(m\),答案必然为\(m\),那么这是答案的下界。再考虑过\((n,m)\)做一条斜率为\(1\)的直线,如果在直线上,那么猜中的概率其实就为\(\frac{1}{2}\)。,而不在坐标轴上猜中的期望其实就为\(m\)。那么现在就是求走到直线的概率,根据期望的线性,可以考虑直线上每一个点产生的贡献,过这个点的路线就可以用组合数轻松算出了。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=1000005;
const int MOD=998244353;
typedef long long LL;
int n,m,fac[N],inv[N];
int Ans1,Ans2;
//LL gcd(LL x,LL y) {
// if(!y) return x;
// return gcd(y,x%y);
//}
//
//struct Data{
// LL x,y;
// Data(LL _x=0,LL _y=0) {x=_x; y=_y;}
// friend Data operator+(const Data A,const Data B){
// Data ret; ret.y=A.y*B.y; ret.x=A.x*B.y+A.y*B.x;
// LL tmp=gcd(ret.x,ret.y); ret.x/=tmp; ret.y/=tmp;
// return ret;
// }
// friend Data operator*(const Data A,const Data B){
// Data ret; ret.x=A.x*B.x; ret.y=A.y*B.y;
// LL tmp=gcd(ret.x,ret.y); ret.x/=tmp; ret.y/=tmp;
// return ret;
// }
//}ans;
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
}
inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
}
int main(){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m); fac[0]=inv[0]=1;
for(int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%MOD;
inv[n+m]=fast_pow(fac[n+m],MOD-2);
for(int i=n+m-1;~i;i--) inv[i]=1ll*inv[i+1]*(i+1)%MOD;
Ans1=1ll*2*m*C(n+m,n)%MOD; Ans2=fast_pow(C(n+m,n)*2%MOD,MOD-2);
for(int i=1;i<=n;i++) {
Ans1=Ans1+1ll*C(n-i+m-i,n-i)*C(i+i,i)%MOD;
Ans1%=MOD;
}
printf("%lld\n",1ll*Ans1*Ans2%MOD);
// ans=ans+Data(1,2)*Data(C(n-i+m-i,n-i)*C(i+i,i),C(n+m,n));
// printf("%lld\n",1ll*ans.x*fast_pow(ans.y,MOD-2)%MOD);
return 0;
}
AT2705 Yes or No(组合数学)的更多相关文章
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- 组合数学or not ---- n选k有重
模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...
- 组合数学(全排列)+DFS CSU 1563 Lexicography
题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...
- uestc1888 Birthday Party 组合数学,乘法原理
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...
- UVA 11076 Add Again 计算对答案的贡献+组合数学
A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...
- POJ3252——Round Number(组合数学)
Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
- hdu 4810 Wall Painting (组合数学+二进制)
题目链接 下午比赛的时候没有想出来,其实就是int型的数分为30个位,然后按照位来排列枚举. 题意:求n个数里面,取i个数异或的所有组合的和,i取1~n 分析: 将n个数拆成30位2进制,由于每个二进 ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
随机推荐
- 《图解设计模式》读书笔记3-1 Singleton模式
目录 单例模式 饿汉式 懒汉式 线程安全的懒汉式 单例模式 确保任何情况下都只有一个实例 饿汉式 public class Singleton { //在类被加载的时候运行一次,这是本类构造函数的唯一 ...
- jmeter之JDBC请求
jmeter不仅可以测试http请求,也可以执行JDBC请求的测试.本次以mysql为例,介绍JDBC请求如何完成发送 目录 1.环境配置 2.数据库连接配置 3.添加一个JDBC请求 1.环境配置 ...
- Jquery.extend()和jQuery.fn.extend(object);
摘自: jquery $.fn $.fx是什么意思有什么用_jquery_脚本之家 jQuery.extend(object); 为扩展jQuery类本身.为类添加新的方法. jQuery.fn.ex ...
- vue项目运行时出现的问题(less、vue poackages version)
今天运行项目,项目一直好好的却突然运行时报错,如下: 是引入文件报错问题,回头查看了一下文件在main.js的引入: import '@/assets/styles/custom.less'; 文件引 ...
- 【ABAP系列】SAP ABAP模块-ABAP动态指针写法的精髓部分
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP模块-ABAP动 ...
- redis数据的备份与恢复
redis数据的备份与恢复 持久化分为两种方式:RDB和AOF 1.1 RDB模式 RDB方式的持久化是通过快照(snapshotting)完成的,当符合一定条件时Redis会自动将内存中的所有数据进 ...
- STP基本概念及实验
相关命令(华为交换机): stp enable(在交换机开启stp:stp使能) display stp 查看stp状态 stp mode stp/rstp/mstp 启用stp/rstp/mstp ...
- MySQL基础(创建库,创建表,添加数据)
CREATE DATABASE 数据库名; CREATE TABLE student2(sno VARCHAR(20) NOT NULL PRIMARY KEY COMMENT"学号&quo ...
- [已解决]报错: Error response from daemon: conflict
报错内容: Error response from daemon: conflict: unable to delete f5b6ef70d79b (must be forced) - image i ...
- UVAlive 6763 Modified LCS
LCS stands for longest common subsequence, and it is a well known problem. A sequence in thisproblem ...