传送门

解题思路

  首先将这个模型放到坐标轴上,\(x\)轴表示\(1\),\(y\)轴表示\(0\)。问题就转化成了从\((0,0)\)走到\((n,m)\),每次可以猜测向\(x\)轴或向\(y\)轴,而实际也有一条路线,求猜中的个数的期望。假设\(n<m\)首先如果一直猜\(m\),答案必然为\(m\),那么这是答案的下界。再考虑过\((n,m)\)做一条斜率为\(1\)的直线,如果在直线上,那么猜中的概率其实就为\(\frac{1}{2}\)。,而不在坐标轴上猜中的期望其实就为\(m\)。那么现在就是求走到直线的概率,根据期望的线性,可以考虑直线上每一个点产生的贡献,过这个点的路线就可以用组合数轻松算出了。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std;
const int N=1000005;
const int MOD=998244353;
typedef long long LL; int n,m,fac[N],inv[N];
int Ans1,Ans2; //LL gcd(LL x,LL y) {
// if(!y) return x;
// return gcd(y,x%y);
//}
//
//struct Data{
// LL x,y;
// Data(LL _x=0,LL _y=0) {x=_x; y=_y;}
// friend Data operator+(const Data A,const Data B){
// Data ret; ret.y=A.y*B.y; ret.x=A.x*B.y+A.y*B.x;
// LL tmp=gcd(ret.x,ret.y); ret.x/=tmp; ret.y/=tmp;
// return ret;
// }
// friend Data operator*(const Data A,const Data B){
// Data ret; ret.x=A.x*B.x; ret.y=A.y*B.y;
// LL tmp=gcd(ret.x,ret.y); ret.x/=tmp; ret.y/=tmp;
// return ret;
// }
//}ans; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
} int main(){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m); fac[0]=inv[0]=1;
for(int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%MOD;
inv[n+m]=fast_pow(fac[n+m],MOD-2);
for(int i=n+m-1;~i;i--) inv[i]=1ll*inv[i+1]*(i+1)%MOD;
Ans1=1ll*2*m*C(n+m,n)%MOD; Ans2=fast_pow(C(n+m,n)*2%MOD,MOD-2);
for(int i=1;i<=n;i++) {
Ans1=Ans1+1ll*C(n-i+m-i,n-i)*C(i+i,i)%MOD;
Ans1%=MOD;
}
printf("%lld\n",1ll*Ans1*Ans2%MOD);
// ans=ans+Data(1,2)*Data(C(n-i+m-i,n-i)*C(i+i,i),C(n+m,n));
// printf("%lld\n",1ll*ans.x*fast_pow(ans.y,MOD-2)%MOD);
return 0;
}

AT2705 Yes or No(组合数学)的更多相关文章

  1. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  2. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  3. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

  4. uestc1888 Birthday Party    组合数学,乘法原理

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...

  5. UVA 11076 Add Again 计算对答案的贡献+组合数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  6. POJ3252——Round Number(组合数学)

    Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...

  7. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  8. hdu 4810 Wall Painting (组合数学+二进制)

    题目链接 下午比赛的时候没有想出来,其实就是int型的数分为30个位,然后按照位来排列枚举. 题意:求n个数里面,取i个数异或的所有组合的和,i取1~n 分析: 将n个数拆成30位2进制,由于每个二进 ...

  9. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

随机推荐

  1. JAVA泛型知识(二)--> <? extends T>和<? super T>

    <? extends T> 和 <? super T> 是Java泛型中的“通配符(Wildcards)” 和 “边界(Bounds)”的概念 <? extends T& ...

  2. Python 学习笔记15 类 - 继承

    我们在编程的过程中,并非都是要重头开始.比如其他人已经有现成的类,我们可以使用其他找人编写的类.术语称之为: 继承. 当一个类继承例外一个类时,它可以获得这个类的所有属性和方法:原有的类称之为 父类, ...

  3. 2019 最新 Java 核心技术教程,都在这了!

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 以下是Java技术栈微信公众号发布的所有关于 Java 的技术干货,会从以下几个方面汇总,本文会长期更新. Java 基础篇 ...

  4. activity 生命周期 http://stackoverflow.com/questions/8515936/android-activity-life-cycle-what-are-all-these-methods-for

    331down voteaccepted See it in Activity Lifecycle (at Android Developers). onCreate(): Called when t ...

  5. spring(三):spring中BeanPostProcessor的使用

    spring中实现BeanPostProcessor的后置处理器 ApplicationContextAwareProcessor 进入该实现类内部 可以看到:该类帮我们组建IOC容器,判断我们的be ...

  6. CAS无锁策略

    并发编程时,对于共享资源的使用需要确保绝对的安全性.除了利用锁机制之外,还有一种无锁的概念.所谓无锁,就是假定在并发情况下,对于共享资源的访问没有冲突,线程可以一直不停的运行,无需阻塞,如果产生冲突, ...

  7. rtp/rtcp

    rtp/rtcp stack custom rtp ORTP UCL Common RTP library Bell Labs RTP Library jrtplib 1.custom rtp sen ...

  8. 2018-2-13-win10-uwp-分治法

    title author date CreateTime categories win10 uwp 分治法 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17:2 ...

  9. python中序列类型

    Python中的序列类型使用 元组类型 一旦被创建,就无法被修改. 创建 使用()或者tuple()创建 creater1=('cat', 'dog', 'tiger', 'human') creat ...

  10. 2019年 Java 面试题解析

    2019年 Java 面试题解析 转载地址:https://www.cnblogs.com/Zz-maker/p/11193930.html 作者: Zz_maker 包含的模块: 本文分为十九个模块 ...