题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4002

题解

神仙题。

根据下面的一个提示:

\[b^2 \leq d \leq (b+1)^2
\]

也就是说 \(-1 < b - \sqrt d \leq 0\)。

那么如果我们构造出一个数列 \(f\),其通项公式为

\[f_n = (\frac{b + \sqrt d}{2})^n + (\frac{b - \sqrt d}{2})^n
\]

因为后面的 \((\frac{b - \sqrt d}{2})^n\) 的绝对值 \(< 1\),(在 \(2 | n\) 且 \(b \neq \sqrt d\) 的时候 \(> 0\),否则 \(<0\))。所以我们只要能求出这个东西,就可以非常快速地求出原题的要求的式子了。


发现这个东西非常像由特征根构造的通项公式。于是我们设 \(f_n = a \cdot f_{n-1} + c \cdot f_{n-2}\)。

\[x^2=ax+c\\x^2-ax-c=0\\x = \frac{a\pm \sqrt{a^2 + 4c}}{2}
\]

于是令 \(a = b, c = \frac{d - b^2}4\)。

正确性很容易验证。


然后用矩阵求一下即可。

在 \(2 | n\) 且 \(b \neq \sqrt d\) 的时候需要把 \(a_n - 1\)。


#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const ull P = 7528443412579576937; ull n, b;
ull d; inline ull smod(ull x) { return x >= P ? x - P : x; }
inline void sadd(ull &x, const ull &y) { x += y; x >= P ? x -= P : x; } inline ull fmul(ull x, ull y) {
ull ans = 0;
for (; y; y >>= 1, sadd(x, x)) if (y & 1) sadd(ans, x);
return ans;
} struct Matrix {
ull a[2][2]; inline Matrix() { memset(a, 0, sizeof(a)); }
inline Matrix(const ull &x) {
memset(a, 0, sizeof(a));
a[0][0] = a[1][1] = x;
} inline Matrix operator * (const Matrix &b) {
Matrix c;
c.a[0][0] = smod(fmul(a[0][0], b.a[0][0]) + fmul(a[0][1], b.a[1][0]));
c.a[0][1] = smod(fmul(a[0][0], b.a[0][1]) + fmul(a[0][1], b.a[1][1]));
c.a[1][0] = smod(fmul(a[1][0], b.a[0][0]) + fmul(a[1][1], b.a[1][0]));
c.a[1][1] = smod(fmul(a[1][0], b.a[0][1]) + fmul(a[1][1], b.a[1][1]));
return c;
}
} A, B; inline Matrix fpow(Matrix x, ull y) {
Matrix ans(1);
for (; y; y >>= 1, x = x * x) if (y & 1) ans = ans * x;
return ans;
} inline void work() {
if (n == 0) return (void)puts("1");
B.a[0][0] = b, B.a[1][0] = 2;
A.a[0][0] = b, A.a[0][1] = (d - (ull)b * b) / 4;
A.a[1][0] = 1, A.a[1][1] = 0;
B = fpow(A, n - 1) * B;
if (n & 1) printf("%llu\n", B.a[0][0]);
else printf("%llu\n", B.a[0][0] - !((ull)b * b == d));
} inline void init() {
read(b), read(d), read(n);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4002 [JLOI2015]有意义的字符串 特征根+矩阵快速幂的更多相关文章

  1. BZOJ4002 [JLOI2015]有意义的字符串 【数学 + 矩乘】

    题目链接 BZOJ4002 题解 容易想到\(\frac{b + \sqrt{d}}{2}\)是二次函数\(x^2 - bx + \frac{b^2 - d}{4} = 0\)的其中一根 那么就有 \ ...

  2. BZOJ4002 [JLOI2015]有意义的字符串

    据说这两场加起来只要170= =而这是最简单的题目了QAQ 看到$(\frac {b + \sqrt {d} } {2} )^n$,第一反应是共轭根式$(\frac {b - \sqrt {d} } ...

  3. [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]

    Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...

  4. bzoj4002 [JLOI2015]有意义的字符串 快速幂

    Description B 君有两个好朋友,他们叫宁宁和冉冉. 有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求((b+sqrt(D)/2)^N的整数部分,请输出结果 Mod 752844341 ...

  5. 【BZOJ4002】[JLOI2015]有意义的字符串 数学

    [BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...

  6. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  7. [JLOI2015]有意义的字符串

    4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1000  Solved: 436[Submit][St ...

  8. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

  9. 【bzoj4002】有意义的字符串

    Portal --> bzoj4002 Solution ​ 虽然说这题有点强行但是感觉还是挺妙的,给你通项让你反推数列的这种==有点毒 ​​ 补档时间 ​ 首先有一个东西叫做特征方程,我们可以 ...

随机推荐

  1. hashcode、equals、HashMap间的关系

    1.从Object说起package com.hallo.collection; public class ObjectDemo { public static void main(String[] ...

  2. 冲刺周五——Fifth Day

    #一.Fifth Day照片 #二.今日份燃尽图 #三.项目进展 * 码云团队协同环境构建完毕 * 利用Leangoo制作任务分工及生成燃尽图 * 完成AES加解密部分代码 * 用代码实现对文件的新建 ...

  3. 最新版本的JDK安装和配置(Java SE 10.0.2)

    1.废话少说,要么百度JDK,要么直接点传送门http://www.oracle.com/technetwork/java/javase/downloads/index.html.这里需要说的JDK包 ...

  4. 安装fedora23后的一些杂项设置

    Boxes是创建虚拟机的技术 tweak: 拧, 捏; 微调 he gave the boy's ear a painful tweak. it's a small tweak over the ra ...

  5. java.lang.NoClassDefFoundError: org/bouncycastle/jce/provider/BouncyCastleProvider解决方法

    因为加入了jdk的第三方安全库,需要额外配置 1.下载bcprov-jdkxx-xxx.jar 2.将bcprov-jdkxx-xxx.jar放入$JAVA_HOME/jre/lib/ext下 3.打 ...

  6. 如何实现免登陆功能(cookie session?)

    Cookie的机制 Cookie是浏览器(User Agent)访问一些网站后,这些网站存放在客户端的一组数据,用于使网站等跟踪用户,实现用户自定义功能. Cookie的Domain和Path属性标识 ...

  7. usb接口类型 简单分类辨识

    usb接口类型 简单分类辨识 - [相似百科] 庆欣 0.0 4 人赞同了该文章 1. 先放图,随着越来越多的接触智能设备,会遇到各种各样的usb接口,对于很多人来说,接口类型只有:usb接口,安卓接 ...

  8. Docker command line 学习笔记

    deprecated ! 以后直接对这个更新 http://wangzhezhe.github.io/blog/2015/08/10/docker-operations/ 之前整理了好久,每次用到一点 ...

  9. 13 (H5*) JS第三天 数组、函数

    目录 1:数组的定义和创建方式 2:数组的总结 3:for循环遍历数组 4:数组的案例 5:冒泡排序 6:函数的定义 7:函数的参数 8:函数的返回值 复习 <script> /* * * ...

  10. 第一次Java学习总结

    初学Java感觉还是蛮可以的,可是做起题目来还是不能得心应手,自己不懂得太多太多,还是需要不断努力去学啊!下面我就把这些天学到的知识点总结一下: 初学Java,我把目前所学知识点总结如下: 1.jav ...