ACL 2019 分析
ACL 2019 分析
word embedding
22篇!
Towards Unsupervised Text Classification Leveraging Experts and Word Embeddings
Zied Haj-Yahia, Adrien Sieg and Léa A. Deleris
A Resource-Free Evaluation Metric for Cross-Lingual Word Embeddings Based on Graph Modularity
Yoshinari Fujinuma, Jordan Boyd-Graber and Michael J. Paul
How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions
Goran Glavaš, Robert Litschko, Sebastian Ruder and Ivan Vulić
Diachronic Sense Modeling with Deep Contextualized Word Embeddings: An Ecological View
Renfen Hu, Shen Li and Shichen Liang
Understanding Undesirable Word Embedding Associations
Kawin Ethayarajh, David Duvenaud and Graeme Hirst
Shared-Private Bilingual Word Embeddings for Neural Machine Translation
Xuebo Liu, Derek F. Wong, Yang Liu, Lidia S. Chao, Tong Xiao and Jingbo Zhu
Unsupervised Bilingual Word Embedding Agreement for Unsupervised Neural Machine Translation
Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita and Tiejun Zhao
Gender-preserving Debiasing for Pre-trained Word Embeddings
Masahiro Kaneko and Danushka Bollegala
Relational Word Embeddings
Jose Camacho-Collados, Luis Espinosa Anke and Steven Schockaert
Classification and Clustering of Arguments with Contextualized Word Embeddings
Nils Reimers, Benjamin Schiller, Tilman Beck, Johannes Daxenberger, Christian Stab and Iryna Gurevych
Probing for Semantic Classes: Diagnosing the Meaning Content of Word Embeddings
Yadollah Yaghoobzadeh, Katharina Kann, T. J. Hazen, Eneko Agirre and Hinrich Schütze
Unsupervised Multilingual Word Embedding with Limited Resources using Neural Language Models
Takashi Wada, Tomoharu Iwata and Yuji Matsumoto
Neural Temporality Adaptation for Document Classification: Diachronic Word Embeddings and Domain Adaptation Models
Xiaolei Huang and Michael J. Paul
Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks
Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya and Partha Talukdar
Word2Sense: Sparse Interpretable Word Embeddings
Abhishek Panigrahi, Harsha Vardhan Simhadri and Chiranjib Bhattacharyya
Analyzing the limitations of cross-lingual word embedding mappings
Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor Soroa and Eneko Agirre
A Transparent Framework for Evaluating Unintended Demographic Bias in Word Embeddings
Chris Sweeney and Maryam Najafian
Unsupervised Joint Training of Bilingual Word Embeddings
Benjamin Marie and Atsushi Fujita
Exploring Numeracy in Word Embeddings
Aakanksha Naik, Abhilasha Ravichander, Carolyn Rose and Eduard Hovy
Analyzing and Mitigating Gender Bias in Languages with Grammatical Gender and Bilingual Word Embeddings
Pei Zhou, Weijia Shi, Jieyu Zhao, Kuan-Hao Huang, Muhao Chen and Kai-Wei Chang
On Dimensional Linguistic Properties of the Word Embedding Space
Vikas Raunak, Vaibhav Kumar, Vivek Gupta and Florian Metze
Towards incremental learning of word embeddings using context informativeness
Alexandre Kabbach, Kristina Gulordava and Aurélie Herbelot
Word Representation
Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation
Benjamin Heinzerling and Michael Strube
Word Vector
3 篇
Unraveling Antonym's Word Vectors through a Siamese-like Network
Mathias Etcheverry and Dina Wonsever
Word and Document Embedding with vMF-Mixture Priors on Context Word Vectors
Shoaib Jameel and Steven Schockaert
Generalized Tuning of Distributional Word Vectors for Monolingual and Cross-Lingual Lexical Entailment
Goran Glavaš and Ivan Vulić
Word
LSTMEmbed: Learning Word and Sense Representations from a Large Semantically Annotated Corpus with Long Short-Term Memories
Ignacio Iacobacci and Roberto Navigli
Few-Shot Representation Learning for Out-Of-Vocabulary Words
Ziniu Hu, Ting Chen, Kai-Wei Chang and Yizhou Sun
Zero-shot Word Sense Disambiguation using Sense Definition Embeddings
Sawan Kumar, Sharmistha Jat, Karan Saxena and Partha Talukdar
Text Categorization by Learning Predominant Sense of Words as Auxiliary Task
Kazuya Shimura, Jiyi Li and Fumiyo Fukumoto
Learning to Discover, Ground and Use Words with Segmental Neural Language Models
Kazuya Kawakami, Chris Dyer and Phil Blunsom
Multiple Character Embeddings for Chinese Word Segmentation
Jianing Zhou, Jingkang Wang and Gongshen Liu
ACL 2019 分析的更多相关文章
- AAAI 2019 分析
AAAI 2019 分析 Google Scholar 订阅 CoKE : Word Sense Induction Using Contextualized Knowledge Embeddings ...
- ICML 2019 分析
ICML 2019 分析 Word Embeddings Understanding the Origins of Bias in Word Embeddings Popular word embed ...
- zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐
[清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...
- 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages
Generating Fluent Adversarial Examples for Natural Languages ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...
- BERT-MRC:统一化MRC框架提升NER任务效果
原创作者 | 疯狂的Max 01 背景 命名实体识别任务分为嵌套命名实体识别(nested NER)和普通命名实体识别(flat NER),而序列标注模型只能给一个token标注一个标签,因此对于嵌套 ...
- Awesome Knowledge-Distillation
Awesome Knowledge-Distillation 2019-11-26 19:02:16 Source: https://github.com/FLHonker/Awesome-Knowl ...
- 【转帖】Infor转型十年启示录:ERP套件厂商为什么要做云平台?
Infor转型十年启示录:ERP套件厂商为什么要做云平台? https://www.tmtpost.com/4199274.html 好像浪潮国际 就是用的infor的ERP软件. 秦聪慧• 2019 ...
- 《构建之法》——GitHub和Visual Studio的基础使用
git地址 https://github.com/microwangwei git用户名 microwangwei 学号后五位 62214 博客地址 https://www.cnblogs.com/w ...
- NLP中的对抗样本
自然语言处理方面的研究在近几年取得了惊人的进步,深度神经网络模型已经取代了许多传统的方法.但是,当前提出的许多自然语言处理模型并不能够反映文本的多样特征.因此,许多研究者认为应该开辟新的研究方法,特别 ...
随机推荐
- 一文简单理解package-lock.json
根据官方文档,https://docs.npmjs.com/files/package-lock.json 这个package-lock.json 是在 `npm install`时候生成一份文件,用 ...
- php打开csv
<?php $fh=fopen("a.csv","r");//这里我们只是读取数据,所以采用只读打开文件流 $arr=fgetcsv($fh);//这个函 ...
- bignumber.js是一款用于任意精度十进制和非十进制算术的JavaScript库
安装 npm install bignumber.js 引入 import { BigNumber } from 'bignumber.js' 实例方法 加法:plus 0.1 + 0.2 // 0. ...
- laravel5.8 表单验证
'name' => 'required|unique:posts|max:255', // posts 表名 源码 vendor\laravel\framework\src\Illuminat ...
- - Power Strings (字符串哈希) (KMP)
https://www.cnblogs.com/widsom/p/8058358.htm (详细解释) //#include<bits/stdc++.h> #include<vect ...
- [工具] BurpSuite--XssValidator插件
0x00 安装 所需软件: 1.burpsuite 2.xssvalidator 源码:https://github.com/nVisium/xssValidator(按照编译指导编译) burpsu ...
- Java基本的程序结构设计 字符类型
char类型 char是2个字节,和short一样. char用单引号来表示. char可以通过数字来表示,也可以通过字母来表示,也可以通过unicode编码单元来表示,特殊字符还可以通过\+字符来表 ...
- Eclipse修改背景颜色(豆沙绿)
操作界面默认颜色为白色.对于我们长期使用电脑编程的人来说,白色很刺激我们的眼睛,所以我经常会改变workspace的背景色,使眼睛舒服一些.设置方法如下: 1.打开window->Prefere ...
- 容器"共享"宿主机的hosts文件(终极方案)
0.背景 有时候制作docker镜像生成容器时需要宿主机的hosts文件共享到容器中.首先想的是通过挂载的方式共享hosts文件,但是实践时发现根本行不通,hosts文件在/etc/目录下,如进行挂载 ...
- canal 环境搭建 kafka Zookeeper安装(二)
第一步 创建Zookeeper 下载完成后 修改 Zookeeper中的 zoo.cfg 修改 dataDir .dataLogDir 集群模式 server.1=ServerIP:2888:3888 ...