[Codeforces 364D]Ghd(随机算法+gcd)
[Codeforces 364D]Ghd(随机算法)
题面
给出n个正整数,在其中选出n/2(向上取整)个数,要求这些数的最大公约数最大,求最大公约数的最大值
分析
每个数被选到的概率$\geq \frac{1}{2}$,因此每次随机选出一个数x,选k次,对于每个数处理出它所能得到的最大答案。显然最大公约数一定是x的一个因数,我们看看x的哪个因数可以成为这n/2(向上取整)个数的gcd。
先对x进行因数分解。并求出x与所有a[i]的gcd ,看看哪个因数成为x和a[i]的gcd的次数最多,且次数超过n/2 。具体做法是,对于每个因数d[u],记录满足gcd(x,a[i])=d[u]的i的个数cnt[u]。然后对于两个因数d[i],d[j] (d[i]<d[j]),如果d[i]能整除d[j],说明j对应的数字也可以被这个的整除,应当把cnt[j]加到cnt[i]上 。最后扫描cnt数组,如果cnt[i]*2>n,就更新答案
这样的时间复杂度是$O(k(n\log max(a_i)+\sqrt{max(a_i)}+max(\sigma(a_i)^2) \ )\(,其中\)\sigma_(a_i)$为$a_i$的因数个数。
我们随机取k次,这k个数都不在最终答案的集合的概率为$1-2^{-k}$,经过实验,取k=10的时候能较好的平衡时间复杂度和正确概率。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#define maxn 1000000
#define maxt 10 //随机选数次数
using namespace std;
typedef long long ll;
int n;
ll a[maxn+5];
ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
}
int random(int l,int r){
return (long long )rand()*rand()%(r-l+1)+l;
}
int sz=0;
ll d[maxn+5];
int cnt[maxn+5];
void divide(ll x){
sz=0;
for(ll i=1;i*i<=x;i++){
if(x%i==0){
d[++sz]=i;
if(x/i!=i) d[++sz]=x/i;
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
ll ans=0;
for(int cas=1;cas<=maxt;cas++){
/*
每个数有1/2的概率被选中,随机t个数,假设它被选中,求出选中它时的答案
对随机出的数x分解因数,并求出x与所有a[i]的gcd
看看哪个因数成为x和a[i]的gcd的次数最多,且次数超过n/2
对于求出来的公因数,我们去从大到小找一个会成为超过一半数的因数的数字。
具体做法是,选择一个因数,去找比它大的因数,
如果它能整除大因数,说明大因数对应的数字也可以被这个小因数整除,应当把加到这个小因数的计数上
时间复杂度O(n+d^2)
但d很小,所以不会TLE
*/
ll x=a[random(1,n)];
divide(x);
sort(d+1,d+sz+1);
for(int i=1;i<=sz;i++) cnt[i]=0;
for(int i=1;i<=n;i++){
int pos=lower_bound(d+1,d+1+sz,gcd(a[i],x))-d;
cnt[pos]++;
}
for(int i=1;i<=sz;i++){
for(int j=i+1;j<=sz;j++){
if(d[j]%d[i]==0) cnt[i]+=cnt[j];
}
}
for(int i=sz;i>=1;i--){
if(cnt[i]*2>=n){
ans=max(ans,d[i]);
break;
}
}
}
printf("%I64d\n",ans);
}
/*
2
11111111111
11111111111
*/
[Codeforces 364D]Ghd(随机算法+gcd)的更多相关文章
- Codeforces 1114E(数学+随机算法)
题面 传送门 分析 通过二分答案,我们显然可以求出数组中最大的数,即等差数列的末项 接着随机取一些数组中的数,对他们两两做差,把得到的差取gcd即为公差 例a={1,5,9,13},我们随机取了1 9 ...
- 随机算法 - Miller_Rabin pollard_rho
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...
- 微信红包中使用的技术:AA收款+随机算法
除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...
- POJ 3318 Matrix Multiplication(随机算法)
题目链接 随机算法使劲水...srand((unsigned)time(0))比srand(NULL)靠谱很多,可能是更加随机. #include <cstdio> #include &l ...
- 抽奖随机算法的技术探讨与C#实现
一.模拟客户需求 1.1 客户A需求:要求每次都按照下图的概率随机,数量不限,每个用户只能抽一次,抽奖结果的分布与抽奖概率近似. 1.2 客户B需求:固定奖项10个,抽奖次数不限,每个用户只能抽一次, ...
- hdu 4712 (随机算法)
第一次听说随机算法,在给的n组数据间随机取两个组比较,当随机次数达到一定量时,答案就出来了. #include<stdio.h> #include<stdlib.h> #inc ...
- 权重随机算法的java实现
一.概述 平时,经常会遇到权重随机算法,从不同权重的N个元素中随机选择一个,并使得总体选择结果是按照权重分布的.如广告投放.负载均衡等. 如有4个元素A.B.C.D,权重分别为1.2.3.4,随机结果 ...
- hdu 4712 Hamming Distance ( 随机算法混过了 )
Hamming Distance Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) ...
- HDU4712+随机算法
随机算法 求n个20位的2进制串的MinDist. Dist:两个串的异或结果中1的个数 /* 随机算法 */ #include<algorithm> #include<iostre ...
随机推荐
- express 设置允许跨域访问
//demo const express = require('express'); const app = express(); //设置允许跨域访问该服务. app.all(’’, functio ...
- 关于post xml的请求和响应
关于post的请求作为开发者应该常用到,post请求的数据包含了参数和data,post参数相对比较容易理解,比如我们一个form提交,其实就是调用后台方法的,发送相关参数,这里我单独说一下关于pos ...
- 转载——CentOS---网络配置详解
看到一篇关于Centos网络配置很详细的文章,特此复制来.原文网址:http://blog.chinaunix.net/uid-26495963-id-3230810.html 一.配置文件详解在RH ...
- 树——populating-next-right-pointers-in-each-node(填充每个节点的next指针)
问题: Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode ...
- 1144. The Missing Number (20)
Given N integers, you are supposed to find the smallest positive integer that is NOT in the given li ...
- utf8 中文
#include <iostream> #include <codecvt> #include <fstream> #include <string> ...
- (NOIP)CSP-S 2019前计划
前言 无 1.NOIP原题板刷 NOIP原题板刷 这是一篇咕了的blog 2.牛客 & ACwing & 洛谷 网课学习 收获还是蛮大的,不过我没有写博客 3.codeforces专项 ...
- Python---基础---list(列表)
2019-05-20 一. # append() 向列表末尾追加新元素 返回值Nonelist1 = [1,2,3,4,5]print(id(list1))list1.append(6)prin ...
- Task1.数据集探索
中文数据集THUCNews:https://pan.baidu.com/s/1hugrfRu 密码:qfud 参考:https://blog.csdn.net/SMith7412/article/de ...
- B/S选择文件夹上传
1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...