题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417

(luogu)https://www.luogu.org/problemnew/show/P3990

题解: 一看就是矩乘优化dp.

每次跳奇数列?那么我们可以将列两两分组,以两列为一组作为矩阵要记录的状态。一个元素位于组内第一列说明它不可能再跳到这一组的第二列(为了避免算重)。转移矩阵的构造见代码。

那么我们用矩阵来表示转移方程: 设向量\(F[i]\)表示状态,\(A\)表示转移矩阵,\(F[i]=\sum^{i-1}_{j=1}F[j]\times A\)

作差分,\(F[i]-F[i-1]=F[i-1]\times A\), \(F[i]=F[i-1]\times (A+I)\)

注意这个递推式成立的条件是\(i\ge 3\), 即必须预处理出\(F[2]\)的值而不可以通过\(F[1]\)得出(想一想,为什么)。

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int P = 30011;
const int N = 50;
struct Matrix
{
int n;
llong a[(N<<1)+3][(N<<1)+3];
void output() {for(int i=1; i<=n; i++) {for(int j=1; j<=n; j++) printf("%lld ",a[i][j]); puts("");}}
void clear(int _n) {n = _n; for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) a[i][j] = 0ll;}
void unitize() {for(int i=1; i<=n; i++) a[i][i] = 1ll;}
Matrix operator *(const Matrix &arg) const
{
Matrix ret; ret.clear(n);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
for(int k=1; k<=n; k++)
{
ret.a[i][k] = (ret.a[i][k]+a[i][j]*arg.a[j][k])%P;
}
}
}
return ret;
}
} trans,cur,ans;
int n;
llong m; void mquickpow(llong y)
{
cur = trans;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ans = ans*cur;}
cur = cur*cur;
}
} int main()
{
scanf("%d%lld",&n,&m);
trans.clear(n<<1); cur.clear(n<<1); ans.clear(n<<1);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(j>=i-1 && j<=i+1)
{
trans.a[i][j+n]++;
trans.a[i+n][j]++;
}
}
}
for(int i=1; i<=n+n; i++)
{
for(int j=1; j<=n; j++)
{
for(int k=1; k<=n; k++)
{
if(k>=j-1 && k<=j+1)
{
trans.a[i][k+n] += trans.a[i][j];
}
}
}
}
ans = trans;
for(int i=1; i<=n+n; i++) trans.a[i][i]++;
mquickpow((m-3)>>1);
if(m&1) printf("%lld\n",(ans.a[1][n]+ans.a[n+1][n]+ans.a[n+2][n])%P);
else printf("%lld\n",(ans.a[1][n+n]+ans.a[n+1][n+n]+ans.a[n+2][n+n])%P);
return 0;
}

BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)的更多相关文章

  1. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  2. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  3. 【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化

    挺好的数位dp……先说一下我个人的做法:经过观察,发现这题按照以往的思路从后往前递增,不怎么好推,然后我就大胆猜想,从前往后推,发现很好推啊,维护四个变量,从开始位置到现在有了i个数 f[i]:所有数 ...

  4. P3990 [SHOI2013]超级跳马

    传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...

  5. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  6. 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)

    2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...

  7. 【BZOJ】1009: [HNOI2008]GT考试(dp+矩阵乘法+kmp+神题)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1009 好神的题orzzzzzzzzzz 首先我是连递推方程都想不出的人...一直想用组合来搞..看来 ...

  8. bzoj 4818: [Sdoi2017]序列计数【容斥原理+dp+矩阵乘法】

    被空间卡的好惨啊---- 参考:http://blog.csdn.net/coldef/article/details/70305596 容斥,\( ans=ans_{没有限制}-ans{没有质数} ...

  9. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

随机推荐

  1. Windows Forms和WPF在Net Core 3.0框架下并不会支持跨平台

    Windows Forms和WPF在Net Core 3.0框架下并不会支持跨平台 微软将WinForms和WPF带到.NET Core 3.0这一事实,相信大家都有所了解,这是否意味着它在Linux ...

  2. System.InsufficientMemoryException:无法分配536870912字节的托管内存缓冲区。可用内存量可能不足

    一个病人住院太久,一次性打印护理表单超过3000条时报如标题所示的错误, 个人查阅分析应该可以从如下几方面入手: 一:查看程序客户端和服务端的配置文件相关属性是否限制了缓存最大值 (应该不是这个问题, ...

  3. reload() 方法用于重新加载当前文档。配合Ajax异步请求。

    1. reload() 方法, reload() 方法用于重新加载当前文档.配合Ajax异步请求. http://www.w3school.com.cn/jsref/met_loc_reload.as ...

  4. 解决Asp.net Core中chtml文档中文乱码的问题

    原因 由于Visual Studio 2017在保存chtml时,文本格式非utf-8,所以导致中文会出现乱码情况. 解决办法 在工具->扩展与更新中添加插件"ForceUTF8 (w ...

  5. Android 之 悬浮窗口

    1. 创建并设置  WindowManager  类 WindowManager mWindowManager; // 取得系统窗体 mWindowManager = (WindowManager) ...

  6. 在CentOS7上无人值守安装Zabbix4.2

    #!/bin/bash # 检查操作系统版本,该脚本只能运行在 Centos .x 系统上 cat /etc/redhat-release |grep -i centos |grep '7.[[:di ...

  7. qt tableview列头背景颜色设置

    设置表列头背景颜色 QHeaderView::section { background: rgb(255, 255, 127); }

  8. 十三、LaTex中的参考文献BibTex

    将默认文献工具设置为bibtex

  9. Python操作Redis,你要的都在这了!

    Redis是一个基于内存的高效的键值型非关系型数据库,存取效率极高,而且支持多种存储数据结构,使用也非常简单.本节中,我们就来介绍一下Python的Redis操作,主要介绍RedisPy这个库的用法. ...

  10. nginx.conf laravel 配置

    server { listen 443; server_name www.liuhuanguang.cn; #填写绑定证书的域名 ssl on; ssl_certificate cert/1_www. ...