Leveldb源码分析--2
coming from http://blog.csdn.net/sparkliang/article/details/8573618
Leveldb源码分析--2的更多相关文章
- leveldb源码分析--SSTable之block
在SSTable中主要存储数据的地方是data block,block_builder就是这个专门进行block的组织的地方,我们来详细看看其中的内容,其主要有Add,Finish和CurrentSi ...
- leveldb源码分析--WriteBatch
从[leveldb源码分析--插入删除流程]和WriteBatch其名我们就很轻易的知道,这个是leveldb内部的一个批量写的结构,在leveldb为了提高插入和删除的效率,在其插入过程中都采用了批 ...
- leveldb源码分析--Key结构
[注]本文参考了sparkliang的专栏的Leveldb源码分析--3并进行了一定的重组和排版 经过上一篇文章的分析我们队leveldb的插入流程有了一定的认识,而该文设计最多的又是Batch的概念 ...
- Leveldb源码分析--1
coming from http://blog.csdn.net/sparkliang/article/details/8567602 [前言:看了一点oceanbase,没有意志力继续坚持下去了,暂 ...
- leveldb源码分析--日志
我们知道在一个数据库系统中为了保证数据的可靠性,我们都会记录对系统的操作日志.日志的功能就是用来在系统down掉的时候对数据进行恢复,所以日志系统对一个要求可靠性的存储系统是极其重要的.接下来我们分析 ...
- leveldb源码分析之Slice
转自:http://luodw.cc/2015/10/15/leveldb-02/ leveldb和redis这样的优秀开源框架都没有使用C++自带的字符串string,redis自己写了个sds,l ...
- LevelDB源码分析--Cache及Get查找流程
本打算接下来分析version相关的概念,但是在准备的过程中看到了VersionSet的table_cache_这个变量才想起还有这样一个模块尚未分析,经过权衡觉得leveldb的version相对C ...
- leveldb源码分析--SSTable之TableBuilder
上一篇文章讲述了SSTable的格式以后,本文结合源码解析SSTable是如何生成的. void TableBuilder::Add(const Slice& key, const Slice ...
- leveldb源码分析之内存池Arena
转自:http://luodw.cc/2015/10/15/leveldb-04/ 这篇博客主要讲解下leveldb内存池,内存池很多地方都有用到,像linux内核也有个内存池.内存池的存在主要就是减 ...
- 【转】Leveldb源码分析——1
先来看看Leveldb的基本框架,几大关键组件,如图1-1所示. Leveldb是一种基于operation log的文件系统,是Log-Structured-Merge Tree的典型实现.LSM源 ...
随机推荐
- socket客户端怎么判断http响应数据的结束
前言 原文地址:https://blog.csdn.net/nimasike/article/details/81122784 http连接 短连接 定义:http头不包含Connection: Ke ...
- babel 转换箭头函数
转换前: const sum = (a,b)=>a+b 转化后: // "use strict"; // var fn = function fn(a, b) { // re ...
- wpf socket 简单通讯示例
源码下载地址:https://github.com/lizhiqiang0204/WPF-Socket 效果如下:
- oracle中用case when查询列表
查询sql语句如下 SELECT * FROM ( SELECT * ,ROW_NUMBER() OVER ( PARTITION BY scene_code ORDER BY (CASE statu ...
- puppet使用rsync模块
puppet使用rsync模块同步目录和文件 环境说明: OS : CentOS5.4 i686puppet版本: ...
- 一本通例题-生日蛋糕——题解<超强深搜剪枝,从无限到有限>
题目传送 显然是道深搜题.由于蛋糕上表面在最底层的半径确认后就确认了,所以搜索时的面积着重看侧面积. 找维度/搜索面临状态/对象:当前体积v,当前外表面面积s,各层的半径r[],各层的高度h[]. 可 ...
- 2014ACM-ICPC广州站题解(摘自闭幕式)
第39届ACM-ICPC亚洲区广州站题解 Ltysky摘抄自闭幕式题目分析 Problem A 满足px+qy=c的点(x,y)在一条直线上,而c的值由直线的截距确定,所以最大化c,就要在糖果(x,y ...
- USACO2018 DEC (Gold) (dp,容斥+哈希,最短路)
\(T1\) 传送门 解题思路 傻逼\(dp\)..直接\(ST\)表处理最大值\(O(n^2)\)艹过了. 代码 #include<bits/stdc++.h> using namesp ...
- loadrunner性能测试巧匠训练营-controller
1.设置集合点 现在脚本添加集合点的函数,集合点不能添加到事务里面,负责统计事务的时候会把时间计算进去 2.IP欺骗 前言 https://www.cnblogs.com/danbing/p/7459 ...
- Java数据结构与算法(3):队列
队列也是一种表,不同的是队列在一端进行插入而在另一端进行删除. 队列模型 队列的基本操作包括入队.出队操作.在表的末端插入元素,在表的开头删除元素,即先进先出(FIFO). 队列的数组实现 对于每一个 ...