递归算法C++代码:

 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> tra;
Morder(root,tra);
return tra;
}
void Morder(TreeNode* root,vector<int> &tra){
if(root==NULL) return;
if(root->left)
Morder(root->left,tra);
tra.push_back(root->val);
if(root->right)
Morder(root->right,tra);
}
};

非递归方法(迭代):通过stack容器

C++代码:O(n)空间复杂度,O(n)时间复杂度

自己写的,实际上为将递归方法代码用stack具体化,需要注意的是加上了回溯与向下递归的判别;

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
/**
迭代法:具象描述递归执行过程
1)检查当前p是否为NULL,如果非NULL,当前节点入栈,只要当前节点有左子节点,左子节点入栈;
2)1之后,取栈顶元素p,由于1的操作,p没有左子节点,那么访问当前节点的值,且p出栈;
3)接下来访问右节点,p=p->right,如果右子节点存在,那么入栈,循环结束;
**/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
if(root==NULL) return {};
vector<int>res;
stack<TreeNode*>s;
TreeNode*p=root;
s.push(p);
while(!s.empty()){
while(p&&p->left){
p=p->left;s.push(p);
} p=s.top();
res.push_back(p->val);s.pop(); //此处先令p=p->right,p可用作第一个while判断是向下递归还是回溯,如果递归过程p为非空,如果为NULl则代表回溯,那么下一轮不用向左递归;
p=p->right;
if(p) s.push(p);
}
return res;
}
};

别人的代码:

 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
//使用栈的非递归方法
vector<int> res;
stack<TreeNode*> st;
TreeNode* T=root;
while(T||!st.empty()){
//将T的所有左孩子入栈
while(T){
st.push(T);
T=T->left;
}
//访问T的元素,然后转到T的右孩子
if(!st.empty()){
T=st.top();
st.pop();
res.push_back(T->val);
T=T->right;
}
}
return res;
}
};

方法三:Morris Traversal

由于需要用到Thread Binary  Tree(线索二叉树),参考 透彻理解线索二叉树 彻底理解线索二叉树

Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)

对于n个节点的二叉树,左右孩子指针为2n个,利用的指针为n-1个,没有利用的指针为n+1个;利用空链域存储前驱和后继:

记ptr指向二叉链表中的一个结点,以下是建立线索的规则:

(1)如果ptr->lchild为空,则存放指向中序遍历序列中该结点的前驱结点。这个结点称为ptr的中序前驱;

(2)如果ptr->rchild为空,则存放指向中序遍历序列中该结点的后继结点。这个结点称为ptr的中序后继;

当然,Morris遍历只用到了线索二叉树的思想和部分操作,线索二叉树的更细节的东西此处不赘述。对于本题,实际上只用到了对叶节点的右指针的线索化,以及通过线索化的指针进行回溯。主要有以下两点:

#1 对所有叶节点的右指针的线索化,令其指向中序遍历的后继节点;

#2 通过线索化的节点,访问中序遍历的后继节点,并恢复被线索化的节点;

参考:二叉树的遍历:先序中序后序遍历的递归与非递归实现及层序遍历

C++代码如下:O(1)空间复杂度,O(n)时间复杂度

 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
//Morris Traversal:右线索化+回溯
vector<int> res;
if(!root) return res;
TreeNode *p=root; while(p){
//定义两个节点指针变量p和p的左孩子pLeft
TreeNode *pLeft=p->left;
if(pLeft){
//访问p的左孩子的最右子孩子(即pLeft右孩子的右孩子的右孩子...)
//线索化之前pLeft的最右子孩子的right指针指向NULL,
//线索化之后pLeft的最右子孩子的right指向中序遍历中该节点的后继节点p
//所以循环终止条件为pLeft->right==NULL 或 pLeft->right==p
while(pLeft->right && pLeft->right!=p){
pLeft=pLeft->right;
}
//此时pLeft代表p的左孩子的最右子孩子
//pLeft->right==NULL代表没有被线索化,进行线索化然后访问p的左孩子
if(pLeft->right==NULL){
pLeft->right=p;
p=p->left;
continue;
}
//pLeft->right!=NULL代表已经被线索化,此时已经回溯到原来的节点p(第2次访问),所以要恢复被线索化的pLeft的最右子孩子
else{
pLeft->right=NULL;
}
}
res.push_back(p->val);
p=p->right;//访问右孩子(对非叶节点),回溯到中序遍历的后续节点(对叶节点);
//因为线索化的操作最终是对所有的叶节点进行的,所以上述语句实际有访问右孩子和回溯两个功能;
}
return res;
}
};

leetcode 94二叉树的中序遍历的更多相关文章

  1. LeetCode 94. 二叉树的中序遍历(Binary Tree Inorder Traversal)

    94. 二叉树的中序遍历 94. Binary Tree Inorder Traversal 题目描述 给定一个二叉树,返回它的 中序 遍历. LeetCode94. Binary Tree Inor ...

  2. Java实现 LeetCode 94 二叉树的中序遍历

    94. 二叉树的中序遍历 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? / ...

  3. Leetcode 94. 二叉树的中序遍历

    1.问题描述 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 2.解法一 ...

  4. LeetCode 94. 二叉树的中序遍历(Binary Tree Inorder Traversal)

    题目描述 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路 由于 ...

  5. 【leetcode 94. 二叉树的中序遍历】解题报告

    前往二叉树的:前序,中序,后序 遍历算法 方法一:递归 vector<int> res; vector<int> inorderTraversal(TreeNode* root ...

  6. LeetCode 94 ——二叉树的中序遍历

    1. 题目 2. 解答 2.1. 递归法 定义一个存放树中数据的向量 data,从根节点开始,如果节点不为空,那么 递归得到其左子树的数据向量 temp,将 temp 合并到 data 中去 将当前节 ...

  7. 【LeetCode】94. 二叉树的中序遍历

    94. 二叉树的中序遍历 知识点:二叉树:递归:Morris遍历 题目描述 给定一个二叉树的根节点 root ,返回它的 中序 遍历. 示例 输入:root = [1,null,2,3] 输出:[1, ...

  8. Leetcode题目94.二叉树的中序遍历(中等)

    题目描述: 给定一个二叉树,返回它的中序遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 思路解析: 1 ...

  9. leetcode刷题-94二叉树的中序遍历

    题目 给定一个二叉树,返回它的中序 遍历. 实现 # def __init__(self, x): # self.val = x # self.left = None # self.right = N ...

随机推荐

  1. Elasticsearch中文文档,内容不全

    注意 内容不全,这是观看中文文档进行操作的 文档地址 旧版中文文档,部分内容过期 https://www.elastic.co/guide/cn/elasticsearch/guide/current ...

  2. 【异常】Reason: Executor heartbeat timed out after 140927 ms

    1 详细异常 ERROR scheduler.JobScheduler: Error running job streaming job ms. org.apache.spark.SparkExcep ...

  3. python、第一篇:初识数据库

    一 数据库管理软件的由来 基于我们之前所学,数据要想永久保存,都是保存于文件中,毫无疑问,一个文件仅仅只能存在于某一台机器上. 如果我们暂且忽略直接基于文件来存取数据的效率问题,并且假设程序所有的组件 ...

  4. c++字符串的输入

    先声明一下字符串的初始化:当初始赋值的时候一定是反斜杠0(\0)有三种方式“”,{‘\0’}."\0"(如果是已经赋值的我们可以采用memset(recvbuf, '\0', si ...

  5. java8学习之Stream源码分析

    上一次已经将Collectors类中的各种系统收集器的源代码进行了完整的学习,而在之前咱们已经花了大量的篇幅对其Stream进行了详细的示例学习,如: 那接下来则通过源代码的角度来对Stream的运作 ...

  6. 阿里云-docker安装redis AND(docker基本操作命令)

    docker官网:https://hub.docker.com/search?q=redis&type=edition&offering=enterprise 1.拉取最新的redis ...

  7. java 学习笔记(五) Zookeeper的集群配置和Java测试程序

    参考博客 http://blog.csdn.net/catoop/article/details/50848555 http://blog.csdn.net/randompeople/article/ ...

  8. CH5101 LICS//hdu5904 LICS

    恭喜我已经正式沦为pj组选手QwQ 标题两个题其实不一样的.这是ch   这是hdu 一.CH上的:裸题,求LICS.n<=3000 经典普及组dp题,题解烂大街了.所以对于这题,只讲细节: $ ...

  9. 红帽Linux故障定位技术详解与实例(4)

    红帽Linux故障定位技术详解与实例(4)   在线故障定位就是在故障发生时, 故障所处的操作系统环境仍然可以访问,故障处理人员可通过console, ssh等方式登录到操作系统上,在shell上执行 ...

  10. head&tail命令

    1.tail tail命令用途是按照要求将指定的文件的最后部分输出到标准设备, 一般是终端,通俗来讲,就是把某个档案文件的最后几行显示到终端上, 如果该档案有更新,tail会自动刷新,确保你看到最新的 ...