有意思的B+树漫画介绍
转载自:伯乐专栏作者/玻璃猫,微信公众号 - 梦见 漫画:什么是b+树
这一次我们来介绍 B+ 树。
一个m阶的B树具有如下几个特征:
1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m
3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。
一个m阶的B+树具有如下几个特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。
B-树中的卫星数据(Satellite Information):
B+树中的卫星数据(Satellite Information):
需要补充的是,在数据库的聚集索引(Clustered Index)中,叶子节点直接包含卫星数据。在非聚集索引(NonClustered Index)中,叶子节点带有指向卫星数据的指针。
第一次磁盘IO:
第二次磁盘IO:
第三次磁盘IO:
B-树的范围查找过程
自顶向下,查找到范围的下限(3):
中序遍历到元素6:
中序遍历到元素8:
中序遍历到元素9:
中序遍历到元素11,遍历结束:
B+树的范围查找过程
自顶向下,查找到范围的下限(3):
通过链表指针,遍历到元素6, 8:
通过链表指针,遍历到元素9, 11,遍历结束:
简要地介绍B+树:
B+树是为磁盘或其他直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有记录节点都是按键值的大小顺序存放在同一层的叶节点中,各叶节点指针进行连接。
B+树的特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。(链表)
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。
4、B+树查找时是从上到下查找;B-树则是从下往上查找(中序遍历)
B+树的优势:
1.单一节点存储更多的元素(这样该节点下分支变多了,树变矮胖了),使得查询的IO次数更少。
2.所有查询都要查找到叶子节点,查询性能稳定。
3.所有叶子节点形成有序链表,便于范围查询。
有意思的B+树漫画介绍的更多相关文章
- B树,B+树,B*树以及R树的介绍
https://blog.csdn.net/peterchan88/article/details/52248714 作者:July.weedge.Frankie.编程艺术室出品. 说明:本文从B树开 ...
- python算法与数据结构-数据结构中常用树的介绍(45)
一.树的定义 树是一种非线性的数据结构,是由n(n >=0)个结点组成的有限集合.如果n==0,树为空树.如果n>0,树有一个特定的结点,根结点根结点只有直接后继,没有直接前驱.除根结点以 ...
- dom树的介绍,及原理分析
三.解析和DOM树的构建 1.解析: 由于解析渲染引擎是一个非常重要的过程,我们将会一步步的深入,现在让我们来介绍解析. 解析一个文档,意味着把它转换为一个有意义的结构——代码可以了解和使用的东西,解 ...
- UE4中的AI行为树简单介绍
UE4引擎中可以实现简单AI的方式有很多,行为树是其中比较常用也很实用的AI控制方式,在官网的学习文档中也有最简单的目标跟踪AI操作教程,笔者在这里只作简单介绍. AIController->和 ...
- AVL树的介绍和实现
一.AVL树 AVL树是一种自平衡二叉查找树,因此在了解AVL树之前先介绍一下平衡二叉树.所谓平衡二叉树即该树中的任一个节点的左子树和右子树高度差不会超过1.如下图左是平衡二叉树,而右图则不是.节点4 ...
- D&F学数据结构系列——B树(B-树和B+树)介绍
B树 定义:一棵B树T是具有如下性质的有根树: 1)每个节点X有以下域: a)n[x],当前存储在X节点中的关键字数, b)n[x]个关键字本身,以非降序存放,因此key1[x]<=key2[x ...
- Trie树(字典树)的介绍及Java实现
简介 Trie树,又称为前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串.与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中的位置决定.一个节点的所有子孙都有相同的前缀,也 ...
- jQuery EasyUI API 中文文档 - Tree树使用介绍
用 $.fn.tree.defaults 重写了 defaults. 依赖 draggable droppable 用法 Tree 能在 <ul> 元素里定义,此标记可以定义为叶节点和子节 ...
- 哈夫曼树的介绍 ---java实现
一. 什么是哈夫曼树 是一种带权路径长度最短的二叉树,也称最优二叉树 带权路径长度:WPL=(W1*L1+W2*L2+W3*L3+...+ Wn*Ln) N个权值Wi(i=1,2,...n)构 ...
随机推荐
- [Bzoj3262]陌上花开(CDQ分治&&树状数组||树套树)
题目链接 题目就是赤裸裸的三维偏序,所以用CDQ+树状数组可以比较轻松的解决,但是还是树套树好想QAQ CDQ+树状数组 #include<bits/stdc++.h> using nam ...
- C# ASP.NET 手写板并生成图片保存
前端: @{ Layout = null; } <!DOCTYPE html> <html lang="zh-CN"> <head> <t ...
- MiniUI学习笔记1-表单控件
1.输入框样式 class="mini-textbox" //普通输入框 class="mini-password" //密码输入框 class="m ...
- 2014-03-01 春季PAT 1073-1076解题报告
今天下午的PAT考试状态不理想,回来怒刷了一遍,解题报告如下: 1073. Scientific Notation (20) 基本模拟题,将一长串的科学计数转换为普通的数字表示方式.思路是是数组存储输 ...
- Spring的事物原理
在Spring中把非功能性的事物管理代码以切面的形式进行管理,只需要声明事物即可启用事物管理. 本质:最终执行的还是java.sql.Connection的setAutoCommit(),commit ...
- Windows结束某个端口的进程
1.打开cmd命令窗口,输入命令:netstat -ano | findstr 8080,根据端口号查找对应的PID.结果如下: 发现8080端口被PID(进程号)为2188的进程占用. 2.根据PI ...
- python 中的getattr(),setattr(),hasattr()的方法
hasattr(object,name) 判断一个对象中是否有name属性或者name方法返回BOOL值,如果有这个属性的话,就返回TRUE,反之,返回FALSE 需要注意的是name要用括号括起来 ...
- What are the differences between an LES-SGS model and a RANS based turbulence model?
The biggest difference between LES and RANS is that, contrary to LES, RANS assumes that \(\overline{ ...
- tensorflow2.0 squeeze出错
用tf.keras写了自定义层,但在调用自定义层的时候总是报错,找了好久才发现问题所在,所以记下此问题. 问题代码 u=tf.squeeze(tf.expand_dims(tf.expand_dims ...
- 四-2、Move、fix、unfix命令
1.Move命令--移动命令 1.对应的菜单和工具栏 2.以移动单个器件为例(以推荐的操作步骤进行操作)(具体步骤如下) 1--光标位于元件的原点 2--光标位于元件的几何中心 3--光标位于鼠标单击 ...