A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use our secret weapon to eliminate the battleships. Each of the battleships can be marked a value of endurance. For every attack of our secret weapon, it could decrease the endurance of a consecutive part of battleships by make their endurance to the square root of it original value of endurance. During the series of attack of our secret weapon, the commander wants to evaluate the effect of the weapon, so he asks you for help.

You are asked to answer the queries that the sum of the endurance of a consecutive part of the battleship line.

Notice that the square root operation should be rounded down to integer.

Input

The input contains several test cases, terminated by EOF.

For each test case, the first line contains a single integer N, denoting there are N battleships of evil in a line. (1 <= N <= 100000)

The second line contains N integers Ei, indicating the endurance value of each battleship from the beginning of the line to the end. You can assume that the sum of all endurance value is less than 2 63.

The next line contains an integer M, denoting the number of actions and queries. (1 <= M <= 100000)

For the following M lines, each line contains three integers T, X and Y. The T=0 denoting the action of the secret weapon, which will decrease the endurance value of the battleships between the X-th and Y-th battleship, inclusive. The T=1 denoting the query of the commander which ask for the sum of the endurance value of the battleship between X-th and Y-th, inclusive.

Output

For each test case, print the case number at the first line. Then print one line for each query. And remember follow a blank line after each test case.

Sample Input

10

1 2 3 4 5 6 7 8 9 10

5

0 1 10

1 1 10

1 1 5

0 5 8

1 4 8

Sample Output

Case #1:

19

7

6

题意:

给你一个含有n个数的数组,m次操作

操作0,给你一个区间l, r 对区间内的每一个数开方。

操作1,输出一个询问区间的数值sum和。

思路:

我们看到数据范围是小于等于2^63 ,我们通过本地开方测试可以发现,

数组中的每一个数,最多开方7次,就可以到1 ,, 而1无论咋开方都还是1 ,就是不会改变的数值了。

那么我们用线段树维护区间的sum和,

对于更新,我们暴力更新到线段树的每一个叶子节点,求和就正常的求和。

这里有一点必须的优化就是 如果线段树一个区间的sum和等于区间的长度,这个得出这个区间中的每一个值都是1,那么直接return,不去更新,因为更新是没意义的。

本题2个坑点,::

1,给的区间x,y ,并不是 x<y 的,有可能 x>y 此处wa多次。

2、题面讲到每一个样例多输出一个回车,刚开始没看到。 此处pe一次。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 100010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n, m;
int root;
ll a[maxn];// 初始点权
ll wt[maxn];// 新建编号点权。
int cnt;// 编号用的变量
int top[maxn];// 所在重链的顶点编号
int id[maxn];//节点的新编号。
std::vector<int> son[maxn];
int SZ[maxn];// 子数大小
int wson[maxn];// 重儿子
int fa[maxn];// 父节点
int dep[maxn];// 节点的深度
struct node
{
int l,r;
ll sum;
ll laze;
}segment_tree[maxn<<2]; void pushup(int rt)
{
segment_tree[rt].sum=(segment_tree[rt<<1].sum+segment_tree[rt<<1|1].sum);
}
void build(int rt,int l,int r)
{
segment_tree[rt].l=l;
segment_tree[rt].r=r;
segment_tree[rt].laze=0;
if(l==r)
{
segment_tree[rt].sum=wt[l];
return;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
pushup(rt);
} void update(int rt,int l,int r)
{
if((segment_tree[rt].l>=l&&segment_tree[rt].r<=r)&&segment_tree[rt].sum==(segment_tree[rt].r-segment_tree[rt].l+1))
{
return ;
}
if(segment_tree[rt].l==segment_tree[rt].r)
{
segment_tree[rt].sum=sqrt(segment_tree[rt].sum);
return ;
}
int mid=(segment_tree[rt].l+segment_tree[rt].r)>>1;
if(mid>=l)
{
update(rt<<1,l,r);
}
if(mid<r)
{
update(rt<<1|1,l,r);
}
pushup(rt);
}
ll query(int rt,int l,int r)
{
if(segment_tree[rt].l>=l&&segment_tree[rt].r<=r)
{
ll res=0ll;
res+=segment_tree[rt].sum;
return res;
}
int mid=(segment_tree[rt].l+segment_tree[rt].r)>>1;
ll res=0ll;
if(mid>=l)
{
res+=query(rt<<1,l,r);
}
if(mid<r)
{
res+=query(rt<<1|1,l,r);
}
return res; } int main()
{
// freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
// freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); gbtb;
int cas=1;
while(cin>>n)
{
cout<<"Case #"<<cas<<":"<<endl;
repd(i,1,n)
{
cin>>wt[i];
}
build(1,1,n);
cin>>m;
int op;
int x,y;
while(m--)
{
cin>>op>>x>>y;
if(x>y)
{
swap(x,y);
}
if(!op)
{
update(1,x,y);
}else
{
cout<<query(1,x,y)<<endl;
}
}
cout<<endl;
cas++;
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Can you answer these queries? HDU - 4027 (线段树,区间开平方,区间求和)的更多相关文章

  1. Can you answer these queries? HDU 4027 线段树

    Can you answer these queries? HDU 4027 线段树 题意 是说有从1到编号的船,每个船都有自己战斗值,然后我方有一个秘密武器,可以使得从一段编号内的船的战斗值变为原来 ...

  2. V - Can you answer these queries? HDU - 4027 线段树 暴力

    V - Can you answer these queries? HDU - 4027 这个题目开始没什么思路,因为不知道要怎么去区间更新这个开根号. 然后稍微看了一下题解,因为每一个数开根号最多开 ...

  3. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  4. spoj gss2 : Can you answer these queries II 离线&&线段树

    1557. Can you answer these queries II Problem code: GSS2 Being a completist and a simplist, kid Yang ...

  5. SPOJ GSS3-Can you answer these queries III-分治+线段树区间合并

    Can you answer these queries III SPOJ - GSS3 这道题和洛谷的小白逛公园一样的题目. 传送门: 洛谷 P4513 小白逛公园-区间最大子段和-分治+线段树区间 ...

  6. SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)

    GSS2 - Can you answer these queries II #tree Being a completist and a simplist, kid Yang Zhe cannot ...

  7. Can you answer these queries III(线段树)

    Can you answer these queries III(luogu) Description 维护一个长度为n的序列A,进行q次询问或操作 0 x y:把Ax改为y 1 x y:询问区间[l ...

  8. hdu4027Can you answer these queries?【线段树】

    A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use ...

  9. 2018.10.16 spoj Can you answer these queries V(线段树)

    传送门 线段树经典题. 就是让你求左端点在[l1,r1][l1,r1][l1,r1]之间,右端点在[l2,r2][l2,r2][l2,r2]之间且满足l1≤l2,r1≤r2l1\le l2,r1 \l ...

随机推荐

  1. SQL Server 等待统计信息基线收集

    背景 我们随时监控每个服务器不同时间段的wait statistics ,可以根据监控信息大概判断什么时候开始出现异常,相当于一个wait statistics基线收集,还可以具体分析占比高的等待类型 ...

  2. 【HANA系列】SAP HANA LEFT/RIGHT字符串截取

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA LEFT/RI ...

  3. Excel随机数相关

    基本函数 RAND() 函数:自动生成一个[0,1)的平均分布随机数(依重新计算而改变) RANDBETWEEN(bottom,top) :返回一个介于指定数字直接的随机数,不会自动改变 INT(nu ...

  4. P1820 【寻找AP数】

    超级题目链接 这题程序实现其实并不难,难的是数学的思想及证明,这在真正的比赛考场上其实是不容易想到的 去年的年赛题目也是在往更难的数学思想上靠拢,并不是一味的编程,需要一定的数学基础 这个..数学性质 ...

  5. 【VS开发】【DSP开发】地址对齐

    组成原理说明------地址对齐 1.引入 1.1如下面的代码,定义了三个变量,int,char,int,并输出他们的十六进制的内存地址. #include<stdio.h> int ma ...

  6. 【Linux开发】linux设备驱动归纳总结(七):2.内核定时器

    linux设备驱动归纳总结(七):2.内核定时器 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ...

  7. 1137. N-th Tribonacci Number(Memory Usage: 13.9 MB, less than 100.00% of Python3)

    其实思路很简单,套用一下普通斐波那契数列的非递归做法即可,不过这个成绩我一定要纪念一下,哈哈哈哈哈 代码在这儿: class Solution: def tribonacci(self, n: int ...

  8. 第六次java实验报告

    Java实验报告 班级 计科二班 学号20188437 姓名 何磊 完成时间 2019/10/17 评分等级 实验四 类的继承 实验目的 理解异常的基本概念: 掌握异常处理方法及熟悉常见异常的捕获方法 ...

  9. CF39H 【Multiplication Table】

    这题可以枚举出每个i,j 位置的数>需要用到进制转换 int zh(int x){ long long sum=0,i=0; while(x){ sum=sum+((x%n)*pow(10,i) ...

  10. HDU 2044 DP (fibonacci)

    HDU 2044 https://vjudge.net/problem/HDU-2044 每一个只有可能由它左面的以及左上的状态变过来,也就是F(i-1)和F(i-2) F(1) = 1 F(2) = ...