转自:http://www.cnblogs.com/widsom/p/8863005.html

题目大意:

比起Encryption 中级版,把n的范围扩大到 500000,k,p范围都在100以内,然后让你求最小值

基本思路:

记sum[i]表示0 - i 的和对 p 取模的值。

1.如果k * p > n,那么与C2的做法一致,O(k*p*n)复杂度低于1e8。

2.如果k * p <= n

那么根据抽屉原理,必有至少k个sum[i]相同,

那么任意取k - 1个相同的 sum[i],记它们的下标为 l1,l2,......,lk-1 ,那么显然区间[l+ 1, li+1](1<=i<k-1)的贡献为0

有贡献的区间只有[1,l1]和[lk-1 + 1,n]由于两个区间的贡献加起来小于2 * (p - 1) ,所以最后的答案要么为 sum[n],要么为 sum[n] + p

那么怎么判断是前者还是后者呢?

只要判断在sum中能不能找到一个以sum[n]结尾的长度为k的非严格上升子序列就可以了

如果能找到就是sum[n],否则就是 sum[n] + p

LIS的复杂度O(nlogn)

注意:

1)关于第二层循环j的循环方向,反方向就不对了,可以仔细思考一下

关于dp中for循环的方向问题,摘自知乎艾庆兴的回答:

动态规划随便怎么实现都可以,只要把握一个原则,当你计算dp i的时候,一定要保证你用到的那些全部都已经被算出来了,

比如区间dp,一般大区间的dp值由小区间算出来,所以你只要保证循环的时候,算每一个大区间之前,小区间都被算出来,就可以

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<set> using namespace std; typedef long long ll;
typedef long long LL;
typedef pair<int,int> pii;
const int inf = 0x3f3f3f3f;
const int maxn = 500000+10;
const ll mod = 1e9+9; int dp[110][110];
int _dp[maxn];
int a[maxn];
int main(){
int n,k,p;
scanf("%d%d%d",&n,&k,&p);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
a[i]+=a[i-1];
a[i]%=p;
}
if(k*p>n){
memset(dp,inf,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<=n;i++){
for(int j=k;j>=1;j--){
for(int l=0;l<p;l++){
dp[a[i]][j]=min(dp[a[i]][j],dp[l][j-1]+(a[i]-l+p)%p);
}
}
}
printf("%d\n",dp[a[n]][k]);
}else{
memset(_dp,inf,sizeof(_dp));
for(int i=1;i<=n-1;i++){
*upper_bound(_dp+1,_dp+n,a[i])=a[i];
}
if(_dp[k-1]<=a[n]){
printf("%d\n",a[n]);
}else{
printf("%d\n",a[n]+p);
}
}
return 0;
}

  

Codeforces 958C3 - Encryption (hard) 区间dp+抽屉原理的更多相关文章

  1. Codeforces 958C3 - Encryption (hard)

    C3 - Encryption (hard) 思路: 记sum[i]表示0 - i 的和对 p 取模的值. 1.如果k * p > n,那么与C2的做法一致,O(k*p*n)复杂度低于1e8. ...

  2. Codeforces - 149D 不错的区间DP

    题意:有一个字符串 s. 这个字符串是一个完全匹配的括号序列.在这个完全匹配的括号序列里,每个括号都有一个和它匹配的括号 你现在可以给这个匹配的括号序列中的括号染色,且有三个要求: 每个括号只有三种情 ...

  3. 【题集】k倍区间(抽屉原理)

    例1:http://lx.lanqiao.cn/problem.page?gpid=T444 蓝桥杯 问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, A ...

  4. Codeforces.392E.Deleting Substrings(区间DP)

    题目链接 \(Description\) \(Solution\) 合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i| ...

  5. Codeforces 983B. XOR-pyramid【区间DP】

    LINK 定义了一种函数f 对于一个数组b 当长度是1的时候是本身 否则是用一个新的数组(长度是原数组-1)来记录相邻数的异或,对这个数组求函数f 大概是这样的: \(f(b[1]⊕b[2],b[2] ...

  6. CodeForces - 1025D: Recovering BST (区间DP)

    Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...

  7. Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)

    题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...

  8. [Codeforces958C2]Encryption (medium)(区间DP)

    Description 题目链接 Solution 显然的区间DP,正常想法f[i][j]表示前i个数分成j块,每次在i前找一个k使得balala,然而常规打法会超时 我们发现,对于i前面的所有点,他 ...

  9. Codefroces 958C2 - Encryption (medium) 区间dp

    转自:https://www.cnblogs.com/widsom/p/8857777.html     略有修改 题目大意: n个数,划分为k段,每一段的和mod p,求出每一段的并相加,求最大是多 ...

随机推荐

  1. 使用sys.dm_exec_cached_plans监控存储过程性能

    讨论了如何使用sys.dm_exec_query_stats动态管理视图(dmv ).本文将以SQL Server 2005为例,讨论如何利用dmv信息来判断tsql的性能优劣.在这篇文章中将继续我有 ...

  2. [USACO2011 Feb]Best Parenthesis

    Time Limit: 10 Sec Memory Limit: 128 MB Description Recently, the cows have been competing with stri ...

  3. C# 图片剪切与缩小的实例

    public void CutToF(Stream stream) { Image initImage = Image.FromStream(stream, true); && ini ...

  4. webService接口的py文件打包成exe

    (一)webService接口的py文件打包成exe,在python3.5版本.pyInstaller3.2版本.pywin32-219.win-amd64-py3.5版本打包时报错,原因可能是pyi ...

  5. Oracle-创建索引分区

    对大数据量索引进行分区同样能够优化应用系统的性能.一般来说,如果索引所对应的表的数据量非常大,比如几百万甚至上千万条数据,则索引也会占用很大的空间,这时,建议对索引进行分区. Oracle索引分区分为 ...

  6. Git - 暂存区及撤销修改

    1. 暂存区 每个 Git 仓库中,都有一个隐藏目录 .git 用于存放 Git 仓库的相关信息,包括暂存区(称为 stage).自动创建的 master 分支以及指向 master 分支的 HEAD ...

  7. nacos 报错is not in serverlist

    描述 nacos 没有在节点列表里面 查看日志 cd /opt/nacos/ tailf /logs/naming-raft.log <!--报错--> 2019-08-16 17:48: ...

  8. hash-散列笔记

    散列基础与整数散列 散列(hash哈希)的基本思想--"将元素通过一个函数转换为整数,使该整数可以尽量唯一地代表这个元素".其中把这个转换函数称为散列函数H,元素在转换前为key, ...

  9. poj1163The Triangle(动态规划,记忆化搜索)

    7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calc ...

  10. python pip报错pip._ vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.

    AttributeError: module 'pip' has no attribute 'main报错 找到安装目录下 helpers/packaging_tool.py文件,找到如下代码: de ...