python因为其全局解释器锁GIL而无法通过线程实现真正的平行计算。这个论断我们不展开,但是有个概念我们要说明,IO密集型 vs. 计算密集型。

IO密集型:读取文件,读取网络套接字频繁。

计算密集型:大量消耗CPU的数学与逻辑运算,也就是我们这里说的平行计算。

而concurrent.futures模块,可以利用multiprocessing实现真正的平行计算。

核心原理是:concurrent.futures会以子进程的形式,平行的运行多个python解释器,从而令python程序可以利用多核CPU来提升执行速度。由于子进程与主解释器相分离,所以他们的全局解释器锁也是相互独立的。每个子进程都能够完整的使用一个CPU内核。

 第一章 concurrent.futures性能阐述

  • 最大公约数

这个函数是一个计算密集型的函数。

# -*- coding:utf-8 -*-
# 求最大公约数
def gcd(pair):
a, b = pair
low = min(a, b)
for i in range(low, 0, -1):
if a % i == 0 and b % i == 0:
return i numbers = [
(1963309, 2265973), (1879675, 2493670), (2030677, 3814172),
(1551645, 2229620), (1988912, 4736670), (2198964, 7876293)
]
  • 不使用多线程/多进程
import time

start = time.time()
results = list(map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start) Took 2.507 seconds.

消耗时间是:2.507。

  • 多线程ThreadPoolExecutor
import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor start = time.time()
pool = ThreadPoolExecutor(max_workers=2)
results = list(pool.map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start) Took 2.840 seconds.

消耗时间是:2.840。

上面说过gcd是一个计算密集型函数,因为GIL的原因,多线程是无法提升效率的。同时,线程启动的时候,有一定的开销,与线程池进行通信,也会有开销,所以这个程序使用了多线程反而更慢了。

  • 多进程ProcessPoolExecutor
import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor start = time.time()
pool = ProcessPoolExecutor(max_workers=2)
results = list(pool.map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start) Took 1.861 seconds.

消耗时间:1.861。

在两个CPU核心的机器上运行多进程程序,比其他两个版本都快。这是因为,ProcessPoolExecutor类会利用multiprocessing模块所提供的底层机制,完成下列操作:

1)把numbers列表中的每一项输入数据都传给map。

2)用pickle模块对数据进行序列化,将其变成二进制形式。

3)通过本地套接字,将序列化之后的数据从煮解释器所在的进程,发送到子解释器所在的进程。

4)在子进程中,用pickle对二进制数据进行反序列化,将其还原成python对象。

5)引入包含gcd函数的python模块。

6)各个子进程并行的对各自的输入数据进行计算。

7)对运行的结果进行序列化操作,将其转变成字节。

8)将这些字节通过socket复制到主进程之中。

9)主进程对这些字节执行反序列化操作,将其还原成python对象。

10)最后,把每个子进程所求出的计算结果合并到一份列表之中,并返回给调用者。

multiprocessing开销比较大,原因就在于:主进程和子进程之间通信,必须进行序列化和反序列化的操作。

第二章 concurrent.futures源码分析

  • Executor

可以任务Executor是一个抽象类,提供了如下抽象方法submit,map(上面已经使用过),shutdown。值得一提的是Executor实现了__enter__和__exit__使得其对象可以使用with操作符。关于上下文管理和with操作符详细请参看这篇博客http://www.cnblogs.com/kangoroo/p/7627167.html

ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。

class Executor(object):
"""This is an abstract base class for concrete asynchronous executors.""" def submit(self, fn, *args, **kwargs):
"""Submits a callable to be executed with the given arguments. Schedules the callable to be executed as fn(*args, **kwargs) and returns
a Future instance representing the execution of the callable. Returns:
A Future representing the given call.
"""
raise NotImplementedError() def map(self, fn, *iterables, **kwargs):
"""Returns a iterator equivalent to map(fn, iter). Args:
fn: A callable that will take as many arguments as there are
passed iterables.
timeout: The maximum number of seconds to wait. If None, then there
is no limit on the wait time. Returns:
An iterator equivalent to: map(func, *iterables) but the calls may
be evaluated out-of-order. Raises:
TimeoutError: If the entire result iterator could not be generated
before the given timeout.
Exception: If fn(*args) raises for any values.
"""
timeout = kwargs.get('timeout')
if timeout is not None:
end_time = timeout + time.time() fs = [self.submit(fn, *args) for args in itertools.izip(*iterables)] # Yield must be hidden in closure so that the futures are submitted
# before the first iterator value is required.
def result_iterator():
try:
for future in fs:
if timeout is None:
yield future.result()
else:
yield future.result(end_time - time.time())
finally:
for future in fs:
future.cancel()
return result_iterator() def shutdown(self, wait=True):
"""Clean-up the resources associated with the Executor. It is safe to call this method several times. Otherwise, no other
methods can be called after this one. Args:
wait: If True then shutdown will not return until all running
futures have finished executing and the resources used by the
executor have been reclaimed.
"""
pass def __enter__(self):
return self def __exit__(self, exc_type, exc_val, exc_tb):
self.shutdown(wait=True)
return False

下面我们以线程ProcessPoolExecutor的方式说明其中的各个方法。

  • map
map(self, fn, *iterables, **kwargs)

map方法的实例我们上面已经实现过,值得注意的是,返回的results列表是有序的,顺序和*iterables迭代器的顺序一致。

这里我们使用with操作符,使得当任务执行完成之后,自动执行shutdown函数,而无需编写相关释放代码。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
results = list(pool.map(gcd, numbers))
print 'results: %s' % results
end = time.time()
print 'Took %.3f seconds.' % (end - start)

产出结果是:

results: [1, 5, 1, 5, 2, 3]
Took 1.617 seconds.
  • submit
submit(self, fn, *args, **kwargs)

submit方法用于提交一个可并行的方法,submit方法同时返回一个future实例。

future对象标识这个线程/进程异步进行,并在未来的某个时间执行完成。future实例表示线程/进程状态的回调。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor start = time.time()
futures = list()
with ProcessPoolExecutor(max_workers=2) as pool:
for pair in numbers:
future = pool.submit(gcd, pair)
futures.append(future)
print 'results: %s' % [future.result() for future in futures]
end = time.time()
print 'Took %.3f seconds.' % (end - start)

产出结果是:

results: [1, 5, 1, 5, 2, 3]
Took 2.289 seconds.
  • future

submit函数返回future对象,future提供了跟踪任务执行状态的方法。比如判断任务是否执行中future.running(),判断任务是否执行完成future.done()等等。

as_completed方法传入futures迭代器和timeout两个参数

默认timeout=None,阻塞等待任务执行完成,并返回执行完成的future对象迭代器,迭代器是通过yield实现的。

timeout>0,等待timeout时间,如果timeout时间到仍有任务未能完成,不再执行并抛出异常TimeoutError

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor, as_completed start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
futures = [ pool.submit(gcd, pair) for pair in numbers]
for future in futures:
print '执行中:%s, 已完成:%s' % (future.running(), future.done())
print '#### 分界线 ####'
for future in as_completed(futures, timeout=2):
print '执行中:%s, 已完成:%s' % (future.running(), future.done())
end = time.time()
print 'Took %.3f seconds.' % (end - start)
  • wait

wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。

使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION和ALL_COMPLETE,默认设置为ALL_COMPLETED。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor, as_completed, wait, ALL_COMPLETED, FIRST_COMPLETED, FIRST_EXCEPTION start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
futures = [ pool.submit(gcd, pair) for pair in numbers]
for future in futures:
print '执行中:%s, 已完成:%s' % (future.running(), future.done())
print '#### 分界线 ####'
done, unfinished = wait(futures, timeout=2, return_when=ALL_COMPLETED)
for d in done:
print '执行中:%s, 已完成:%s' % (d.running(), d.done())
print d.result()
end = time.time()
print 'Took %.3f seconds.' % (end - start)

由于设置了ALL_COMPLETED,所以wait等待所有的task执行完成,可以看到6个任务都执行完成了。

执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:False, 已完成:False
执行中:False, 已完成:False
#### 分界线 ####
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
Took 1.518 seconds.

如果我们将配置改为FIRST_COMPLETED,wait会等待直到第一个任务执行完成,返回当时所有执行成功的任务。这里并没有做并发控制。

重跑,结构如下,可以看到执行了2个任务。

执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:False, 已完成:False
执行中:False, 已完成:False
#### 分界线 ####
执行中:False, 已完成:True
执行中:False, 已完成:True
Took 1.517 seconds.
 

python concurrent.futures的更多相关文章

  1. python concurrent.futures包使用,捕获异常

    concurrent.futures的ThreadPoolExecutor类暴露的api很好用,threading模块抹油提供官方的线程池.和另外一个第三方threadpool包相比,这个可以非阻塞的 ...

  2. python concurrent.futures.Threadpoolexcutor的有界队列和无界队列

    1.默认是无界队列,如果生产任务的速度大大超过消费的速度,则会把生产任务无限添加到无界队列中,这样一来控制不了生产速度,二来是会造成系统内存会被队列中的元素堆积增多而耗尽. 2.改写为有界队列 cla ...

  3. Python标准模块--concurrent.futures

    1 模块简介 concurrent.futures模块是在Python3.2中添加的.根据Python的官方文档,concurrent.futures模块提供给开发者一个执行异步调用的高级接口.con ...

  4. 在python中使用concurrent.futures实现进程池和线程池

    #!/usr/bin/env python # -*- coding: utf-8 -*- import concurrent.futures import time number_list = [1 ...

  5. python简单粗暴多进程之concurrent.futures

    python在前面写过多线程的库threading: python3多线程趣味详解 但是今天发现一个封装得更加简单暴力的多进程库concurrent.futures: # !/usr/bin/pyth ...

  6. python异步并发模块concurrent.futures入门详解

    concurrent.futures是一个非常简单易用的库,主要用来实现多线程和多进程的异步并发. 本文主要对concurrent.futures库相关模块进行详解,并分别提供了详细的示例demo. ...

  7. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  8. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  9. Python之线程 3 - 信号量、事件、线程队列与concurrent.futures模块

    一 信号量 二 事件 三 条件Condition 四 定时器(了解) 五 线程队列 六 标准模块-concurrent.futures 基本方法 ThreadPoolExecutor的简单使用 Pro ...

随机推荐

  1. 可以用 Python 编程语言做哪些神奇好玩的事情?

    作者:造数科技链接:https://www.zhihu.com/question/21395276/answer/219747752 使用Python绘图 我们先来看看,能画出哪样的图 更强大的是,每 ...

  2. NullpointerException处理

    毫无疑问,空指针NullpointerException是我们最常遇到异常,没有之一! 在刚进入编程职业时,我想,大部分刚进入的同学肯定会受到前辈们的叮咛:一定要防止空指针,这是个低级错误.你们不是? ...

  3. 软工+C(2017第3期) 超链接

    // 上一篇:分数和checklist // 下一篇:Alpha/Beta换人 注:平常看文章,总有能和构建之法,软件工程相关的链接,增量记录,也可以通过在其他人博客的交流中使用相关的超链接,在使用中 ...

  4. 团队作业4——第一次项目冲刺(Alpha版本)

    Deadline: 2017-4-30 22:00PM,以博客发表日期为准 评分基准: 按时交 - 有分,检查的项目包括后文的两个个方面 七天的敏捷冲刺 日志的集合贴 晚交 - 0分 迟交一周以上 - ...

  5. 201521123091 《Java程序设计》第11周学习总结

    Java 第十一周总结 第十一周的作业. 目录 1.本章学习总结 2.Java Q&A 3.码云上代码提交记录及PTA实验总结 4.课后阅读 1.本章学习总结 1.1 以你喜欢的方式(思维导图 ...

  6. java可访问修饰符

    修饰符 同一个类中 同一个包中 不同包的子类 不提供包的非子类 private √ friendly(省略) √ √ protected √ √ √ public √ √ √ √

  7. 201521123013 《Java程序设计》第6周学习总结

    1. 本章学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 2. 书面作业 Q1.clone方法 1.1 Object ...

  8. 201521123097《Java程序设计》第三周学习总结

    1. 本周学习总结 2. 书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; p ...

  9. 201521123031《Java程序设计》 第2周学习总结

    1. 本周学习总结 (1)能够更加熟练地使用码云 (2)学习了Arrys和String的用法和一些运用 (3)懂得如何查询函数的源代码,通过查看源代码,能够更深入的了解函数适用情况以及利弊 2. 书面 ...

  10. 201521123063 《Java程序设计》 第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. (1)多线程的冲突 当我们不想一种资源被同时使用,导致最后结果不一致,解决方法: 使用synchronized标记 ...