BZOJ 1041 [HAOI2008]圆上的整点:数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041
题意:
给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^2的圆周上,有多少个坐标为整数的点。
题解:
科普视频:http://www.bilibili.com/video/av12131743/
推导的大致思路:

推导:
一、17 = 4^2 + 1^2
求圆周上有多少个点,就是求有多少个整数对(a,b)满足a^2 + b^2 = R^2。
二、17 = (4+i)*(4-i)
变形:a^2 + b^2 = (a + b*i) * (a - b*i) = R^2。
其中,a + b*i 与 a - b*i 复共轭。
也就是将R^2分解成(a + b*i) * (a - b*i)。
有一个结论,对于整数a来说:
(1)如果a为4n + 1型的素数,则a可以被分解为两个不同的高斯素数。
(2)如果a为4n + 3型的素数,则不能被分解。因为它们不仅是普通素数,还是高斯素数。
(即费马平方和定理:只有4n+1型的素数,才能表示成两个数的平方和)
分解方法:
(1)首先将R^2分解质因数,R^2 = a1^p1 + a2^p2 +...
(2)然后将R^2继续分解成若干高斯素数之积。
(3)将这些高斯素数分成两组,如果这两组各自之积复共轭,则为一对合法的(a,b)。
其中,将高斯素数分组时,对于一个素因子ai,有pi+1中分组方法。
特别地,2^k对于最终答案没有影响。
根据乘法原理,在能够分组(分成复共轭数)的前提下,最终的分组方法数 = 4*∏(pi+1)。
(这就是本题的做法。分解质因数,复杂度O(sqrt(N)))
三、积性函数χ(n),求π的表达式(这部分跟此题无关)
对于函数χ(n),定义为:
(1)n = 4k + 1时,χ(n) = 1
(2)n = 4k + 3时,χ(n) = -1
(3)n为偶数时,χ(n) = 0
函数χ(n)对于任意整数满足性质:χ(ab) = χ(a)*χ(b),所以χ(n)为积性函数。
将圆上点的数量写成如下形式:

即:N = 4*∏(∑ χ(ki)),ki为R^2的因子。
将上式拆开,每一项χ(n)的n为R的因子:

圆内所有点的个数:

移动之后:

所以得到了圆内点的个数,也就是圆面积的另一种表达形式。
最终得到了一个π的表达式。

AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; long long n;
long long ans=; int main()
{
cin>>n;
n=n*n;
long long t=n;
while(!(t&)) t>>=;
for(int i=;i*i<=n && t>;i++)
{
int p=;
while(t%i==)
{
p++;
t/=i;
}
if(i%==) ans*=(p+);
else if(i%== && (p&))
{
ans=;
break;
}
}
if(t%==) ans=;
cout<<ans*<<endl;
}
BZOJ 1041 [HAOI2008]圆上的整点:数学的更多相关文章
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ(2) 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4966 Solved: 2258[Submit][Sta ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ】1041: [HAOI2008]圆上的整点(几何)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...
- 1041: [HAOI2008]圆上的整点 - BZOJ
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...
随机推荐
- Docker - Failed to connect to localhost port 4000: Connection refused
转载.翻译自 https://stackoverflow.com/questions/44014698/docker-failed-to-connect-to-localhost-port-4000- ...
- Color.js增强你对颜色的控制
往逝之因 不要低头,皇冠会掉... 可你又没有皇冠 Color.js 增强你对颜色的控制 阅读目录 轻松管理颜色--color.js库 使用color.js Accessor Methods 你该知 ...
- 个人作业(2)---英语学习APP案例分析
第一部分 调研, 评测 1.下载并使用,描述最简单直观的个人第一次上手体验. PC上的必应词典主页面与其他英语学习APP类似,一些英文读物的推送,但是每日阅读需要去浏览器去看有点不太方便,我觉得直接在 ...
- Java第七周学习总结
1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 参考资料: XMind 2. 书面作业 ArrayList代码分析 1.1 解释ArrayList的contains源代码 ...
- 201521123006 《java程序设计》 第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多数据库相关内容. 2. 书面作业 1. MySQL数据库基本操作 建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自 ...
- java第十一次作业
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 1.互斥访问与同步访问 完成题集4-4(互斥访问)与4-5(同步访问) 1.1 除了使用synch ...
- 201521123122 《java程序设计》第十一周学习总结
## 201521123122 <java程序设计>第十一周实验总结 ## 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 其实这周也没讲多少内容,所 ...
- Java课程设计 ————五子棋 (个人博客)
JAVA课程设计 五子棋(博客个人版) •团队课程设计博客链接 http://www.cnblogs.com/mz201521044152/p/7065575.html •个人负责模块或任务说明 1. ...
- 通用技术 : 异步调用 - Ajax技术
Ajax技术概述
- JavaSE(九)之反射
开始接触的时候可能大家都会很模糊到底什么是反射,大家都以为这个东西不重要,其实很重要的,几乎所有的框架都要用到反射,增加灵活度.到了后面几乎动不动就要用到反射. 首先我们先来认识一下对象 学生---- ...