题目链接:http://poj.org/problem?id=2115

C Looooops
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 22912   Accepted: 6293

Description

A Compiler Mystery: We are given a C-language style for loop of type

for (variable = A; variable != B; variable += C)

statement;

I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.

Input

The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop.

The input is finished by a line containing four zeros.

Output

The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

Sample Input

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

Sample Output

0
2
32766
FOREVER

Source

题意:定义一个循环for(int i = A ; i!=B ; i= (i+c)%2^k)

求循环执行的次数,如果死循环输出forever;

题解:上面的循环可以写成(A+C*X)%2^k=B%2^k

上式可以写成 C*X%2^k=B-A%2^k;

这样就转化成了一个模线性方程。

模线性方程有下列定理

数论:

求解模线性方程

  • 定理:方程ax=b(mod n)对于未知量x有解,当且仅当gcd(a, n)|b
  • 定理:方程ax=b(mod n)或者对模n有d个不同的解,其中d=gcd(a, n)或者无解。
  • 定理:设d=gcd(a, n),假定对整数x’和y’,有d=ax’+ny’。如果d|b,则方程ax=b(modn)有一个解的值为x0,满足x0=x’(b/d)mod n
  • 定理:假设方程ax=b(mod n)有解(即有d|b,其中d=gcd(a, n)),x0是该方程的任意一个解,则该方程对模n恰有d个不同的解,分别为:xi=x0+i(n/d)(i = 1, 2, …, d-1)
  • int Modular_Linear(int a,int b,int n)
    {
       int d,x,y,x0,i;
       d=Extend_Euclid(a,n,x,y);
       if(b%d==0)
       {
           x0=(x*(b/d))%n;
           if(x0<n)x0+=n;
          
    for(i=0;i<d;i++)cout<<(x0+i*n/d)%n<<endl;
       }
       return 0;
    }

注意:这个题要求如果有解的话输出最小解,一般在处理最小解的时候用(x%mod+mod)%mod

 //求模线性方程
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define ll long long ll gcd(ll a, ll b, ll &x, ll &y)
{
if(b==) {
x = ;
y = ;
return a;
}
ll ans = gcd(b,a%b,x,y);
ll tx = x;
x = y;
y = tx-a/b*y;
return ans;
}
int main()
{
ll a,b,c,k;
while(~scanf("%lld%lld%lld%lld",&a,&b,&c,&k))
{
if(a==b&&b==c&&c==k&&k==) return ;
ll M = 1LL << k;
b = b-a;
ll m,n;
ll d = gcd(c,M,m,n);
if(b%d!=) {
puts("FOREVER");
continue;
}
ll ans = (m*(b/d))%M;
ans = (ans%(M/d)+M/d)%(M/d);
printf("%lld\n",ans);
}
return ;
}
/*
void gcd(LL a, LL b, LL &d, LL &x, LL &y) {
if(!b) { d = a; x = 1; y = 0; }
else { gcd(b, a%b, d, y, x); y-= x*(a/b); }
}
*/

poj_2115C Looooops(模线性方程)的更多相关文章

  1. POJ2115 C Looooops ——模线性方程(扩展gcd)

    题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  2. POJ2115 C Looooops 模线性方程(扩展欧几里得)

    题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...

  3. POJ2115——C Looooops(扩展欧几里德+求解模线性方程)

    C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...

  4. C Looooops(扩展欧几里得求模线性方程)

    http://poj.org/problem?id=2115 题意:对于C的循环(for i = A; i != B; i+=C)问在k位存储系统内循环多少次结束: 若循环有限次能结束输出次数,否则输 ...

  5. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  6. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  7. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

  8. [ACM_其他] Modular Inverse [a关于模m的逆 模线性方程]

    Description The modular modular multiplicative inverse of an integer a modulo m is an integer x such ...

  9. 模线性方程&&中国剩余定理及拓展

    一.求解模线性方程 由ax=b(mod n) 可知ax = ny + b 就相当于ax + ny = b 由扩展欧几里得算法可知有解条件为gcd(a, n)整除d 可以直接套用扩展欧几里得算法 最终由 ...

随机推荐

  1. Python学习日记:day2

    1.格式化输出 name = input("请输入你的名字:") age =input("请输入你的年龄:") job =input("请输入你的工作 ...

  2. sharepreference使用教程

    1.应用 SharePreference主要用于保存一些数据,比如用户登录后的user_id,user_mobile,这样就可以做自动登录了,每次判断SharePreference中有没有数据,有的话 ...

  3. 【Uva623】500!(高精)

    Description 求N! \(N \leq 1000\) Sample Input 10 30 50 100 Sample Output 10! 3628800 30! 265252859812 ...

  4. DeepLearning.ai学习笔记(三)结构化机器学习项目--week1 机器学习策略

    一.为什么是ML策略 如上图示,假如我们在构建一个喵咪分类器,数据集就是上面几个图,训练之后准确率达到90%.虽然看起来挺高的,但是这显然并不具一般性,因为数据集太少了.那么此时可以想到的ML策略有哪 ...

  5. tesserat训练中文备忘录

    最近用OCR识别身份证,用的tesseract引擎.但是google自带的中文库是在太慢了,尤其是对于性别.民族这样结果可以穷举的特征信息而言,完全可以自己训练字库.自己训练字库不仅可以提高识别速度, ...

  6. jQueryUI Autocomplete插件使用入门教程(最新版)---------转载

    前言: jQuery,无需多作介绍,相信各位读者都应该接触或使用过了.jQuery UI,简而言之,它是一个基于jQuery的前端UI框架.我们可以使用jQuery + jQuery UI非常简单方便 ...

  7. HTML5 矩阵变换

    transforms 使用图形上下文对象的transforms方法修改变换矩阵,该方法的定义如下: context.transform(m11,m12,m21,m22,dx,dy); 其中m11,m1 ...

  8. IDE 、SATA、SCSI 的区别

    http://chuanwang66.iteye.com/blog/1134784 IDE IDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,它的 ...

  9. deepin系统下安装git

    1.打开命令行 2.输入 sudo apt-get update sudo apt-get install git 3.显示 建议安装: git-daemon-run | git-daemon-sys ...

  10. Qt仿win7自动顶部最大化左侧右侧半屏效果

    Win7系统不得不说是非常好用的,也是目前为止占用份额最大的操作系统,其中win7有个效果,将窗体拖动到顶部时会自动最大化,拖动到左侧右侧时会自动半屏显示,再次拖动窗体到其他位置,会重新恢复之前的大小 ...