转载请标明出处http://www.cnblogs.com/haozhengfei/p/4db529fa9f4c042673c6dc8218251f6c.html


SVD算法

1.1什么是SVD?

   降维的两种方式:PCA(主成分分析)    SVD
   SVD算法:矩阵奇异值分解算法,一种降维算法

1.2矩阵的深入理解

   在一个线性空

间中,只要我们选定一组基,那么对于任何一个线性变换
,都能够用一个确定的矩阵来加以描述,

就如同一个对象可能有多个引用名字不同,所以一组相似矩阵都是一个线性变换在不同的组基的描述

 
特征值与特征向量
    Ax=λx    其中A为矩阵,λ为特征值,x为特征向量,矩阵是线性空间里的变换的描述。
   矩阵A与向量相乘,本质上对向量x进行一次线性转换(旋转或拉伸),而该转换的效果为常数c乘以向量x,当我们求特征值与特征向量的时候,就是为了求矩阵A能使哪些向量(特征向量)只发生拉伸,而拉伸的程度,自然就是特征值λ了。
    特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵(n*n)。
    通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。也就是说:提取这个矩阵最重要的特征

1.3SVD提取矩阵的特征,解决以上的局限

• 假设A是一个m∗n阶矩阵,如此则存在一个分解使得如下:

 
其中U是m×m阶矩阵;Σ是m×n阶非负实数对角矩阵;而VT,即V的共轭转置,是n×n阶矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。而且一般来说,我们会将Σ上的值按从大到小的顺序排列。

 
问题:将一个矩阵分解为三个矩阵相乘,但是这三个矩阵的负责程度一点不必原来的A矩阵小,甚至更复杂,为什么要将原来的矩阵分解为三个矩阵呢,这和降纬有什么关系呢
 
   当我们把矩阵Σ里的奇异值按从大到小的顺

序排列以后,很容易发现,奇异值σ减小的速度特别快。在很
多时候,前10%甚至前1%的奇异值的和就占了全部奇异值和

的99%以上。换句话说,大部分奇异值都很小,基本没什么用
于是,SVD也可以这么写:

   这样左边的大矩阵,就能用右边的三个小矩阵表示了,生产中

这三个小矩阵的规模加起来也远小于原本的矩阵A,从而达到
降纬的目的。

1.4SVD_code

train

SVD_new
代码示例
 import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.linalg
import org.apache.spark.mllib.linalg.{Matrix, SingularValueDecomposition, Vectors}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.rdd.RDD /**
* Created by hzf
*/
object SVD_new {
// E:\IDEA_Projects\mlib\data\SVD\train\test.txt E:\IDEA_Projects\mlib\data\SVD\model 3 true 1.0E-9d local
def main(args: Array[String]) {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
if (args.length < 6) {
System.err.println("Usage: SVD <inputPath> <modelPath> <num> <compute> <ignore> <master> [<AppName>]")
System.exit(1)
}
val appName = if (args.length > 6) args(6) else "SVD"
val conf = new SparkConf().setAppName(appName).setMaster(args(5))
val sc = new SparkContext(conf)
val data = sc.textFile(args(0))
val train: RDD[linalg.Vector] = data.map(sample => {
Vectors.dense(sample.split(",").map(_.toDouble))
})
val mat: RowMatrix = new RowMatrix(train)
var compute = true
compute = args(3) match {
case "true" => true
case "false" => false
}
//第一个参数3意味着取top 3个奇异值,第二个参数true意味着计算矩阵U,第三个参数意味小于1.0E-9d的奇异值将被抛弃
val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD(args(2).toInt, compute);
val u = svd.U;
//矩阵U
val s = svd.s
//奇异值
val v = svd.V //矩阵V
println(s);
println("#" * 50);
println(v);
}
}
设置运行参数
  1. E:\IDEA_Projects\mlib\data\SVD\train\test.txt E:\IDEA_Projects\mlib\data\SVD\model 3true1.0E-9d local
 

MLlib--SVD算法的更多相关文章

  1. 推荐系统 SVD和SVD++算法

    推荐系统 SVD和SVD++算法 SVD:   SVD++: [Reference] 1.SVD在推荐系统中的应用详解以及算法推导 2.推荐系统——SVD/SVD++ 3.SVD++ 4.SVD++协 ...

  2. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  3. spark mllib k-means算法实现

    package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkC ...

  4. Spark MLlib回归算法LinearRegression

    算法说明 线性回归是利用称为线性回归方程的函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析方法,只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归,在实际情况中大多数都是多 ...

  5. Spark MLlib基本算法【相关性分析、卡方检验、总结器】

    一.相关性分析 1.简介 计算两个系列数据之间的相关性是统计中的常见操作.在spark.ml中提供了很多算法用来计算两两的相关性.目前支持的相关性算法是Pearson和Spearman.Correla ...

  6. SVD/SVD++实现推荐算法

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不仅可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域. ...

  7. 机器学习算法总结(九)——降维(SVD, PCA)

    降维是机器学习中很重要的一种思想.在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”.另 ...

  8. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  9. 从item-base到svd再到rbm,多种Collaborative Filtering(协同过滤算法)从原理到实现

    http://blog.csdn.net/dark_scope/article/details/17228643 〇.说明 本文的所有代码均可在 DML 找到,欢迎点星星. 一.引入 推荐系统(主要是 ...

  10. SVD在推荐系统中的应用详解以及算法推导

    SVD在推荐系统中的应用详解以及算法推导     出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...

随机推荐

  1. ntopng 推送solr

    1.修改代码在且不说 2.修改完之后先卸载原先的ntopng 使用 whereis ntopng 找到安装目录,然后删除 /usr/local/bin/ntopng /usr/local/share/ ...

  2. 封装简单的equery

    /** * Created by wang on 2016/3/23. */ //绑定操作 function bindEvent(obj,events,fn){ if (obj.addEventLis ...

  3. 使用Word进行文档修订版本的比较

    项目经理在实际的工作过程中,比如要写文档方案,就需要对文档的修订版本进行管理和控制.在以前的工作中,笔者使用的是UltraEdit这个软件工具中的Ultra Compare这个子工具来进行的文档版本的 ...

  4. Oracle死锁情况

    ORACLE EBS操作某一个FORM界面,或者后台数据库操作某一个表时发现一直出于"假死"状态,可能是该表被某一用户锁定,导致其他用户无法继续操作 复制代码 代码如下: --锁表 ...

  5. SpringCloud学习笔记(6)——Eureka高可用

    参考Spring Cloud官方文档第12章12.3.12.5.12.6小节 12.3 High Availability, Zones and Regions 默认情况下,每一个Eureka服务器同 ...

  6. ActiveMQ进阶学习

    本文主要讲述ActiveMQ与spring整合的方案.介绍知识点包括spring,jms,activemq基于配置文件模式管理消息,消息监听器类型,消息转换类介绍,spring对JMS事物管理. 1. ...

  7. linux搭建SS服务

    基本准备: 购买主机:www.virmach.com LINUX系统操作经验:vim , apt-get 等命令的使用 putty.exe连接ssh工具的使用 开始 使用putty连接上去,并输入密码 ...

  8. Spring框架入门之开发环境搭建(MyEclipse2017平台)

    基于MyEclipse2017平台搭建Spring开发环境,这里MyEclipse已将Spring集成好了,我们只需要做一简单配置即可 一.环境配置 OS:Windows7 64位 IDE工具:MyE ...

  9. Core Animation 文档翻译 (第二篇)

    Core Animation 文档翻译 (第二篇) 核心动画基础要素 核心动画为我们APP内Views动画和其他可视化元素动画提供了综合性的实现体系.核心动画不是我们APP内Views的替代品,相反, ...

  10. Django-mtv开发模式

    从著名的MVC模式开始说起 所谓的MVC就是把Web应用分为模型(M)控制器(C)和视图(V)三层,他们之间以一种插件式的.松耦合的房还是 连接在一起,模型负责业务对象与数据库的映射(ORM),视图负 ...