花了不到一周的时间看完了一本reids设计与实现的书,感觉整体的设计有些地方的确很巧妙,各个结构之间联系的非常紧密,但是很简单,逻辑性的没有太多,但是学到了一个bitcount计数1的方法比较巧妙,记录下来

看了一个老外的介绍的很详细

转载过来

OK, let's go through the code line by line:

Line 1:

i = i - ((i >> 1) & 0x55555555);

First of all, the significance of the constant 0x55555555 is that, written using the Java / GCC style binary literal notation),

0x55555555 = 0b01010101010101010101010101010101

That is, all its odd-numbered bits (counting the lowest bit as bit 1 = odd) are 1, and all the even-numbered bits are 0.

The expression ((i >> 1) & 0x55555555) thus shifts the bits of i right by one, and then sets all the even-numbered bits to zero. (Equivalently, we could've first set all the odd-numbered bits of i to zero with & 0xAAAAAAAA and then shifted the result right by one bit.) For convenience, let's call this intermediate value j.

What happens when we subtract this j from the original i? Well, let's see what would happen if ihad only two bits:

    i           j         i - j
----------------------------------
0 = 0b00 0 = 0b00 0 = 0b00
1 = 0b01 0 = 0b00 1 = 0b01
2 = 0b10 1 = 0b01 1 = 0b01
3 = 0b11 1 = 0b01 2 = 0b10

Hey! We've managed to count the bits of our two-bit number!

OK, but what if i has more than two bits set? In fact, it's pretty easy to check that the lowest two bits of i - j will still be given by the table above, and so will the third and fourth bits, and the fifth and sixth bits, and so and. In particular:

  • despite the >> 1, the lowest two bits of i - j are not affected by the third or higher bits of i, since they'll be masked out of j by the & 0x55555555; and

  • since the lowest two bits of j can never have a greater numerical value than those of i, the subtraction will never borrow from the third bit of i: thus, the lowest two bits of i also cannot affect the third or higher bits of i - j.

In fact, by repeating the same argument, we can see that the calculation on this line, in effect, applies the table above to each of the 16 two-bit blocks in i in parallel. That is, after executing this line, the lowest two bits of the new value of i will now contain the number of bits set among the corresponding bits in the original value of i, and so will the next two bits, and so on.

Line 2:

i = (i & 0x33333333) + ((i >> 2) & 0x33333333);

Compared to the first line, this one's quite simple. First, note that

0x33333333 = 0b00110011001100110011001100110011

Thus, i & 0x33333333 takes the two-bit counts calculated above and throws away every second one of them, while (i >> 2) & 0x33333333 does the same after shifting i right by two bits. Then we add the results together.

Thus, in effect, what this line does is take the bitcounts of the lowest two and the second-lowest two bits of the original input, computed on the previous line, and add them together to give the bitcount of the lowest four bits of the input. And, again, it does this in parallel for all the 8 four-bit blocks (= hex digits) of the input.

Line 3:

return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;

OK, what's going on here?

Well, first of all, (i + (i >> 4)) & 0x0F0F0F0F does exactly the same as the previous line, except it adds the adjacent four-bit bitcounts together to give the bitcounts of each eight-bit block (i.e. byte) of the input. (Here, unlike on the previous line, we can get away with moving the & outside the addition, since we know that the eight-bit bitcount can never exceed 8, and therefore will fit inside four bits without overflowing.)

Now we have a 32-bit number consisting of four 8-bit bytes, each byte holding the number of 1-bit in that byte of the original input. (Let's call these bytes ABC and D.) So what happens when we multiply this value (let's call it k) by 0x01010101?

Well, since 0x01010101 = (1 << 24) + (1 << 16) + (1 << 8) + 1, we have:

k * 0x01010101 = (k << 24) + (k << 16) + (k << 8) + k

Thus, the highest byte of the result ends up being the sum of:

  • its original value, due to the k term, plus
  • the value of the next lower byte, due to the k << 8 term, plus
  • the value of the second lower byte, due to the k << 16 term, plus
  • the value of the fourth and lowest byte, due to the k << 24 term.

(In general, there could also be carries from lower bytes, but since we know the value of each byte is at most 8, we know the addition will never overflow and create a carry.)

That is, the highest byte of k * 0x01010101 ends up being the sum of the bitcounts of all the bytes of the input, i.e. the total bitcount of the 32-bit input number. The final >> 24 then simply shifts this value down from the highest byte to the lowest.

Ps. This code could easily be extended to 64-bit integers, simply by changing the 0x01010101 to 0x0101010101010101 and the >> 24 to >> 56. Indeed, the same method would even work for 128-bit integers; 256 bits would require adding one extra shift / add / mask step, however, since the number 256 no longer quite fits into an 8-bit byte.

其重要就是对于32位的数据看做一个整体,首先以其中2位为一组计算出1的个数,再以4位为一组,计算出1的个数,再以8位为一组,计算出1的个数

其实到这里1的个数就是4个8位的之和,可以通过计算求解

比如0xbbbbbbbb *0x01010101= 0xbbbbbbbb *(1<<24+1<<16+1<<8+1)

最后32位中1的个数的总数就被保存在了高8位中,此时只需要>>24就可以求出来了

当然在实际中,我们可以一次计算出多个32位,比如计算出4*32 那样的时间效率相对于遍历就节约了128倍,相对于查表法也快了4*4倍

redis bitcount variable-precision swar算法的更多相关文章

  1. variable precision SWAR算法

    计算二进制形式中1的数量这种问题,在各种刷题网站上比较常见,以往都是选择最笨的遍历方法“蒙混”过关.在了解Redis的过程中接触到了variable precision SWAR算法(以下简称VP-S ...

  2. variable-precision SWAR算法介绍

    BITCOUNT命令是统计一个位数组中非0进制位的数量,数学上称作:”Hanmming Weight“ 目前效率最好的为variable-precision SWAR算法,可以常数时间内计算出多个字节 ...

  3. variable-precision SWAR算法:计算Hamming Weight

    variable-precision SWAR算法:计算Hamming Weight 转自我的Github 最近看书看到了一个计算Hamming Weight的算法,觉得挺巧妙的,纪录一下. Hamm ...

  4. [算法]从一道题引出variable-precision SWAR算法

    苏君君出了一道题,是牛客网上面的: 输入一个int型整数,输出该数二进制表示中1的个数.其中负数用补码表示. 其实这道题并不难,大家很容易想到的解法是转成字符串的思路,即如下所示: public st ...

  5. 11.redis cluster的hash slot算法和一致性 hash 算法、普通hash算法的介绍

    分布式寻址算法 hash 算法(大量缓存重建) 一致性 hash 算法(自动缓存迁移)+ 虚拟节点(自动负载均衡) redis cluster 的 hash slot 算法 一.hash 算法 来了一 ...

  6. CYQ.Data V5 分布式缓存Redis应用开发及实现算法原理介绍

    前言: 自从CYQ.Data框架出了数据库读写分离.分布式缓存MemCache.自动缓存等大功能之后,就进入了频繁的细节打磨优化阶段. 从以下的更新列表就可以看出来了,3个月更新了100条次功能: 3 ...

  7. Redis的一致性哈希算法

    一.节点取余 根据redis的键或者ID,再根据节点数量进行取余. key:value如下 name:1 zhangsna:18:北京 对name:1 进行hash操作,得出来得值是242342345 ...

  8. Redis 为何使用近似 LRU 算法淘汰数据,而不是真实 LRU?

    在<Redis 数据缓存满了怎么办?>我们知道 Redis 缓存满了之后能通过淘汰策略删除数据腾出空间给新数据. 淘汰策略如下所示: 设置过期时间的 key volatile-ttl.vo ...

  9. Redis rdb文件CRC64校验算法 Java实现

    查看RDB文件结构,发现最后的8字节是CRC64校验算得,从文件头开始直到8字节校验码前的FF结束码(含),经过CRC64校验计算发现,貌似最后的8字节是小端模式实现的. 参考redis的crc64实 ...

随机推荐

  1. python——进程、线程、协程

    Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #!/usr/bin/env pytho ...

  2. Xamarin.Android 绑定友盟社会化分享组件

    Xamarin.Android 绑定友盟社会化分享组件 最近在开发博客园Android App的时候需要用到友盟社会化分享组件,在github上搜了一下都没有找到最新版本绑定好的项目,就自己动手来绑定 ...

  3. Spring+SpringMVC+MyBatis+easyUI整合优化篇(十三)数据层优化-表规范、索引优化

    本文提要 最近写的几篇文章都是关于数据层优化方面的,这几天也在想还有哪些地方可以优化改进,结合日志和项目代码发现,关于数据层的优化,还是有几个方面可以继续修改的,代码方面,整合了druid数据源也开启 ...

  4. Angular2.js——表单(上)

    表单创建一个有效.引人注目的数据输入体验.Angular表单协调一组数据绑定控件,跟踪变更.验证输入的有效性,并且显示错误信息. 接下来,主要内容有: 1.使用组件和模板构建Angular表单: 2. ...

  5. 实现图片的循环滚动——JS的简单应用

    首先默认都了解JS的循环分支运算符等基本语法 用CSS实现简单的布局也是会的. 然后我们就可以来了解一下 [DOM 树节点] 它分为三大类:元素节点.文本节点.属性节点 文本节点跟属性节点为元素节点的 ...

  6. Webgis开源解决方案之环境搭建(三)

    前两篇文章介绍了开源GIS服务器Geoserver的安装以及开源数据库Postgres的安装,这篇文章介绍开源前端udig软件的安装,使用在后续篇幅中介绍 开源前端目前主流的是QGIS或者udig,网 ...

  7. springboot(十二):springboot如何测试打包部署

    有很多网友会时不时的问我,spring boot项目如何测试,如何部署,在生产中有什么好的部署方案吗?这篇文章就来介绍一下spring boot 如何开发.调试.打包到最后的投产上线. 开发阶段 单元 ...

  8. hdu 4552 怪盗基德的挑战书

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4552 思路: 其实可以用KMP+DP解决 我这里给出后缀数组的解题方法 思路: 初始化ans=n(n为 ...

  9. 使用MyEclipse生成实体类和Hibernate映射文件

    1.打开MyEclipse DataBase Explorer. 如上图,点击图中2便可切换到MyEclipse DataBase Explorer,若没有该图标,则点击图中1,便可选择MyEclip ...

  10. [笔记]ACM笔记 - 自用模板

    长期更新. 快速幂 lld pow_mod(lld a, lld b, const int &pr) { lld ans = 1; while (b) { if (b & 1) ans ...