uoj #58 【WC2013】糖果公园
题面:http://uoj.ac/problem/58
正解:树上带修改莫队。
首先Orz vfk大神,树上莫队的套路还是很厉害的。。http://vfleaking.blog.163.com/blog/static/174807634201311011201627/
我们考虑普通的树上莫队。我们要先把树分好块,分块的方式和王室联邦是一样的,即限定块的大小来分块。当我们限定了块的大小以后,我们能保证块的直径不超过块的大小,于是在同一个块内移动是可以保证复杂度的。然后树上莫队每次就是上一个询问的$u$到这一个询问的$u$的路径修改一遍,$v$也是一样,注意每次询问$LCA$都是要特判的。加入修改操作以后,我们考虑普通莫队算法,就是把块的大小改成$O(n^{\frac{2}{3}})$,然后能够保证总复杂度是$O(n^{\frac{5}{3}})$的,每次询问记录它之前要执行的修改次数。然后我们就可以直接暴力搞了,如果修改多了就撤回,少了就加上。这样我们就能完美地解决这道题了。
//It is made my wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#define inf (1<<30)
#define N (100010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct node1{ int u,v,t,i; }q1[N];
struct node2{ int x,v,pre; }q2[N];
struct edge{ int nt,to; }g[*N]; int head[N],v[N],w[N],top[N],fa[N],son[N],bl[N],sz[N],dep[N],dfn[N],pre[N],col[N],c[N],st[N],vis[N],n,m,Q,tp,Lca,num,cnt,ccnt,cnt1,cnt2,block;
ll ans[N],Ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){ g[++num]=(edge){head[from],to},head[from]=num; return; } int cmpt(const node1 &a,const node1 &b){
if (bl[a.u]==bl[b.u] && bl[a.v]==bl[b.v]) return a.t<b.t;
if (bl[a.u]==bl[b.u]) return bl[a.v]<bl[b.v]; return bl[a.u]<bl[b.u];
} il void dfs1(RG int x,RG int p){
fa[x]=p,sz[x]=,dep[x]=dep[p]+; RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p) continue;
dfs1(v,x); sz[x]+=sz[v];
if (sz[son[x]]<=sz[v]) son[x]=v;
}
return;
} il void dfs2(RG int x,RG int p,RG int anc){
top[x]=anc,dfn[x]=++cnt; RG int ttp=tp;
if (son[x]) dfs2(son[x],x,anc); RG int v;
if (tp-ttp>=block){ ccnt++; while (tp>ttp) bl[st[tp--]]=ccnt; } //按大小分块
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p || v==son[x]) continue; dfs2(v,x,v);
if (tp-ttp>=block){ ccnt++; while (tp>ttp) bl[st[tp--]]=ccnt; }
}
st[++tp]=x; return;
} il int lca(RG int u,RG int v){
while (top[u]!=top[v]){
if (dep[top[u]]<dep[top[v]]) swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v] ? u : v;
} il void update(RG int x){
if (!vis[x]) vis[x]=,c[col[x]]++,Ans+=(ll)w[c[col[x]]]*(ll)v[col[x]];
else vis[x]=,Ans-=(ll)w[c[col[x]]]*(ll)v[col[x]],c[col[x]]--; return;
} il void modify(RG int x,RG int v){ if (!vis[x]) col[x]=v; else update(x),col[x]=v,update(x); return; } il void change(RG int x,RG int y){
while (x!=y){
if (dep[x]<dep[y]) update(y),y=fa[y];
else update(x),x=fa[x];
}
return;
} il void work(){
n=gi(),m=gi(),Q=gi(),block=pow(n,0.6); RG int type,x,y;
for (RG int i=;i<=m;++i) v[i]=gi();
for (RG int i=;i<=n;++i) w[i]=gi();
for (RG int i=;i<n;++i) x=gi(),y=gi(),insert(x,y),insert(y,x);
while (tp) st[tp--]=ccnt;
for (RG int i=;i<=n;++i) col[i]=gi(),pre[i]=col[i]; dfs1(,),dfs2(,,);
for (RG int i=;i<=Q;++i){
type=gi(),x=gi(),y=gi();
if (type){
if (dfn[x]>dfn[y]) swap(x,y);
q1[++cnt1].u=x,q1[cnt1].v=y,q1[cnt1].t=cnt2,q1[cnt1].i=cnt1;
}
if (!type) q2[++cnt2].x=x,q2[cnt2].v=y,q2[cnt2].pre=pre[x],pre[x]=y;
}
sort(q1+,q1+cnt1+,cmpt); cnt2=q1[].t;
for (RG int i=;i<=cnt2;++i) modify(q2[i].x,q2[i].v);
change(q1[].u,q1[].v),Lca=lca(q1[].u,q1[].v);
update(Lca),ans[q1[].i]=Ans,update(Lca); //LCA特判
for (RG int i=;i<=cnt1;++i){
while (cnt2<q1[i].t) cnt2++,modify(q2[cnt2].x,q2[cnt2].v);
while (cnt2>q1[i].t) modify(q2[cnt2].x,q2[cnt2].pre),cnt2--;
change(q1[i-].u,q1[i].u),change(q1[i-].v,q1[i].v);
Lca=lca(q1[i].u,q1[i].v),update(Lca),ans[q1[i].i]=Ans,update(Lca);
}
for (RG int i=;i<=cnt1;++i) printf("%I64d\n",ans[i]); return; //这几天用windows。。
} int main(){
File("park");
work();
return ;
}
uoj #58 【WC2013】糖果公园的更多相关文章
- [BZOJ3052][UOJ#58][WC2013]糖果公园
[BZOJ3052][UOJ#58][WC2013]糖果公园 试题描述 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来 ...
- BZOJ3052/UOJ#58 [wc2013]糖果公园 莫队 带修莫队 树上莫队
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3052.html 题目传送门 - BZOJ3052 题目传送门 - UOJ#58 题意 给定一棵树,有 ...
- bzoj 3052: [wc2013]糖果公园 带修改莫队
3052: [wc2013]糖果公园 Time Limit: 250 Sec Memory Limit: 512 MBSubmit: 506 Solved: 189[Submit][Status] ...
- 洛谷 P4074 [WC2013]糖果公园 解题报告
P4074 [WC2013]糖果公园 糖果公园 树上待修莫队 注意一个思想,dfn序处理链的方法,必须可以根据类似异或的东西,然后根据lca分两种情况讨论 注意细节 Code: #include &l ...
- AC日记——[WC2013]糖果公园 cogs 1817
[WC2013]糖果公园 思路: 带修改树上莫队(模板): 来,上代码: #include <cmath> #include <cstdio> #include <cst ...
- COGS1817. [WC2013]糖果公园
1817. [WC2013]糖果公园 ★★★☆ 输入文件:park.in 输出文件:park.out 简单对比时间限制:8 s 内存限制:512 MB [题目描述] Candyland ...
- 【BZOJ3052】[wc2013]糖果公园 带修改的树上莫队
[BZOJ3052][wc2013]糖果公园 Description Input Output Sample Input Sample Input Sample Output 84 131 27 84 ...
- 【BZOJ】3052: [wc2013]糖果公园 树分块+带修改莫队算法
[题目]#58. [WC2013]糖果公园 [题意]给定n个点的树,m种糖果,每个点有糖果ci.给定n个数wi和m个数vi,第i颗糖果第j次品尝的价值是v(i)*w(j).q次询问一条链上每个点价值的 ...
- 【Luogu P4074】[WC2013]糖果公园(树上带修改莫队)
题目描述 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 \(n\) 个游 ...
- BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)
题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...
随机推荐
- 关于 jquery html 动态添加的元素绑定事件——On()
Ajax动态生成的数据,动作绑定需要重新执行 $(document).on('click','.btn1',function(){}); 替换: $('btn1').on('click') = fun ...
- Jmeter函数引用和函数重定向
在jmeter中的[选项]中选择[函数助手对话框]---这些函数可以高速有效的帮助我们开展自动化编写与校验!!!!!! 如图: 重点!!!本章的侧重点不讲函数的具体使用,函数具体的使用与java类似, ...
- RabbitMQ-从基础到实战(1)— Hello RabbitMQ
转载请注明出处 1.简介 本篇博文介绍了在windows平台下安装RabbitMQ Server端,并用JAVA代码实现收发消息 2.安装RabbitMQ RabbitMQ是用Erlang开发的,所以 ...
- JavaWeb之Filter、Listener
昨天和大家介绍了一下JSON的用法,其实JSON中主要是用来和数据库交互数据的.今天给大家讲解的是Filter和Listener的用法. 一.Listenner监听器 1.1.定义 Javaweb中的 ...
- 队列工厂之RedisMQ
本次和大家分享的是RedisMQ队列的用法,前两篇文章队列工厂之(MSMQ)和队列工厂之RabbitMQ分别简单介绍对应队列环境的搭建和常用方法的使用,加上本篇分享的RedisMQ那么就完成了咋们队列 ...
- laravel的延迟消息队列
laravel的延迟消息队列 这篇来自于看到朋友转的58沈剑的一篇文章:1分钟实现"延迟消息"功能(http://mp.weixin.qq.com/s?__biz=MjM5ODYx ...
- mac下常用软件整理
1.非常好用的压缩管理软件(免费版):RAR Extrator Free 解压的中文不会产生乱码: 2.记笔记用的:有道笔记.Evernote 3.SVN管理软件:ConerStone 4.非常给力 ...
- Webpack单元测试,e2e测试
此篇文章是续 webpack多入口文件.热更新等体验,主要说明单元测试与e2e测试的基本配置以及相关应用. 一.单元测试 实现单元测试框架的搭建.es6语法的应用.以及测试覆盖率的引入. 1. 需要安 ...
- Vue学习之路---No.7(分享心得,欢迎批评指正)
老规矩,先回顾一下上回的重点: 1.对于input框,若为单选框,如果没有对其设置value,那么其checked的值将在true Or false之间切换:如果设置了value,那么将会切换valu ...
- JS清除DIV的选中状态
var clearSlct = "getSelection" in window ? function () { window.getSelection().removeAllRa ...