UVA 1426 - Discrete Square Roots

题目链接

题意:给定X, N。 R。要求r2≡x (mod n)
(1 <= r < n)的全部解。R为一个已知解

思路:

r2≡x (mod n)=>r2+k1n=x

已知一个r!,带入两式相减得
r2−r12=kn
=> (r+r1)(rr1)=kn

枚举A,B,使得

A * B = n

(r + r1)为A倍数

(r - r1)为B倍数

这样就能够推出

Akar1=Bkb+r1=r

=> Aka=Bkb+2r1

=> Aka≡2r1 (mod B)

这样就等于求线性模方程的全部解。进而求出还有一解R。最后把全部答案用一个set保存下来输出

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <set>
using namespace std; long long X, N, R;
set<long long> ans; long long exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) {x = 1; y = 0; return a;}
long long d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
} void mod_line(long long a, long long b, long long n) {
long long x, y;
long long d = exgcd(a, n, x, y);
if (b % d) return;
x = x * (b / d);
x = (x % (n / d) + (n / d)) % (n / d);
long long a0 = x * a - b / 2;
long long k = a * n / d;
for (long long tmp = a0; tmp < N; tmp += k) {
if (tmp >= 0) ans.insert(tmp);
}
} int main() {
int cas = 0;
while (~scanf("%lld%lld%lld", &X, &N, &R) && N) {
ans.clear();
long long m = (long long)sqrt(N);
for (long long i = 1; i <= m; i++) {
if (N % i) continue;
mod_line(i, 2 * R, N / i);
mod_line(N / i, 2 * R, i);
}
printf("Case %d:", ++cas);
for (set<long long>::iterator it = ans.begin(); it != ans.end(); it++)
printf(" %lld", *it);
printf("\n");
}
return 0;
}

UVA 1426 - Discrete Square Roots(数论)的更多相关文章

  1. UVa 1426 Discrete Square Roots (扩展欧几里德)

    题意:给定 x,n,r,满足 r2 ≡ x mod(n) ,求在 0 ~ n 内满足 rr2 ≡ x mod(n) 的所有的 rr. 析:很明显直接是肯定不行了,复杂度太高了. r2 ≡ x mod( ...

  2. Discrete Square Roots UVALive - 4270(拓展欧几里得)

    a≡b(mod n)的含义是“a和b除以n的余数相同”,其充要条件是“a-b是n的整数倍”: 求所有满足条件r^2=x(mod m)的r 题目已经给定了一个初始的r,x,m #include < ...

  3. UVALive 4270 Discrete Square Roots

    题目描述: 在已知一个离散平方根的情况下,按照从小到大的顺序输出其他所有的离散平方根. 在模n意义下,非负整数x的离散平方根是满足0<=r<n且r2=x(mod n)的整数r. 解题思路: ...

  4. UVALive - 4270 Discrete Square Roots (扩展欧几里得)

    给出一组正整数$x,n,r$,使得$r^2\equiv x(mod\: n)$,求出所有满足该等式的$r$. 假设有另一个解$r'$满足条件,则有$r^2-r'^2=kn$ 因式分解,得$(r+r') ...

  5. UVA1426 Discrete Square Roots

    思路:\(exgcd\) 提交:\(2\)次 错因:输出格式错误OTZ 题解: 求:\(r^2 ≡ x \mod N , 0 \leq r < N\),并且题目会给出 \(x,N\) 和一个合法 ...

  6. uva 1426 离散平方根

    1426 - Discrete Square Roots Time limit: 3.000 seconds A square root of a number x <tex2html_verb ...

  7. Square roots

    Loops are often used in programs that compute numerical results by starting with an approximate answ ...

  8. uva 11246 - K-Multiple Free set(数论)

    题目链接:uva 11246 - K-Multiple Free set 题目大意:给定n,k.求一个元素不大于n的子集,要求该子集的元素尽量多,而且不含两个数满足a∗k=b. 解题思路:容斥原理.f ...

  9. uva 11300 - Spreading the Wealth(数论)

    题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...

随机推荐

  1. HTML学习笔记 CSS背景样式案例 第六节 (原创) 参考使用表

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. ueditor精简插件和减少初次加载文件的方法

    ueditor初次使用的时候加载的文件大小大概有1MB还要多,这个页面的打开速度相对来说是很慢很慢的. 其实通常我们并不需要ueditor的全部功能,通过chromedev工具发现初次加载的时候就调用 ...

  3. C#获得时间段

    DateTime today = dt.Date;//今天 00:00:00 DateTime tomorrow = dt.Date.AddDays(1);//明天 00:00:00 DateTime ...

  4. [转载] FreeMarker教程

    转载自http://www.blogjava.net/freeman1984/archive/2010/11/04/337239.html FreeMarker是一个模板引擎,一个基于模板生成文本输出 ...

  5. enote笔记法(2)——why的使用

    章节:why的使用 用法: why 概念|词汇(比概念更一般的形式的keyword)|短语|句子 用法1: why 概念|why keyword([比概念更一般的形式的keyword]) “why 概 ...

  6. EDI数据导入的注意事项&常见异常处理

    EXCEL表格注意事项: •      编码是0开头的,格式必须是文本,否则前面请加字母: •      注意全角半角,中文标点英文标点: •      编号文字类开头和结尾不要有空格,姓名中间也不要 ...

  7. 逆波兰表达式POJ——2694

    问题描述: 逆波兰表达式是一种吧运算符前置的算术表达式,例如普通的表达式2+3的逆波兰表示为+23.逆波兰表达式的优点是运算符之间不必有优先级的关系,也不必有括号改变运算次序,例如(2+3)*4的逆波 ...

  8. 给负载均衡器添加多IP

    看到一个场景,针对web应用的一个需求,需要在负载均衡器设置多个公网ip. 给负载均衡器添加多个公共ip 创建多个虚拟机,同时把他们添加到同一个可用性集中,方便后期部署到负载均衡器. 创建多个公网ip ...

  9. leecode -- 3sum Closet

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  10. canvas画一个时钟

    效果图如下 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...