What Is It?

A hash table, or associative array, is a well known key-value data structure. In R there is no equivalent, but you do have some options. You can use a vector of any type, a list, or an environment.

But as you’ll see with all of these options their performance is compromised in some way. In the average case a lookupash tabl for a key should perform in constant time, or O(1), while in the worst case it will perform in O(n) time,n being the number of elements in the hash table.

For the tests below, we’ll implement a hash table with a few R data structures and make some comparisons. We’ll create hash tables with only unique keys and then perform a search for every key in the table. Here’s our unique random string creator function:

library(plyr)
library(ggplot2) # Create n unique strings. We use upper and lower case letters only. Create
# length 1 strings first, and if we haven't satisfied the number of strings
# requested, we'll create length 2 strings, and so on until we've created n
# strings.
#
# Returns them in random order
#
unique_strings <- function(n){
string_i <- 1
string_len <- 1
ans <- character(n)
chars <- c(letters,LETTERS)
new_strings <- function(len,pfx){
for(i in 1:length(chars)){
if (len == 1){
ans[string_i] <<- paste(pfx,chars[i],sep='')
string_i <<- string_i + 1
} else {
new_strings(len-1,pfx=paste(pfx,chars[i],sep=''))
}
if (string_i > n) return ()
}
}
while(string_i <= n){
new_strings(string_len,'')
string_len <- string_len + 1
}
sample(ans)
}

Using a Vector

All vectors in R can be named, so let’s see how looking up a vector element by name compares to looking up an element by index.

Here’s our fake hash table creator:

# Create a named integer vector size n. Note that elements are initialized to 0
#
fake_hash_table <- function(n){
ans <- integer(n)
names(ans) <- unique_strings(n)
ans
}

Now let’s create hash tables size 210 thru 215 and search each element:

timings1 <- adply(2^(10:15),.mar=1,.fun=function(i){
ht <- fake_hash_table(i)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i)ht[names(ht)[j]]==0L)[3],
system.time(for (k in 1:i)ht[k]==0L)[3]),
index = c('1_string','2_numeric')
)
})

We perform element lookup by using an equality test, so

ht[names(ht)[j]]==0L

performs the lookup using a named string, while

ht[k]==0L

performs the lookup by index.

p1 <- ggplot(timings1,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Integer Vectors')
p1

So we see that as the hash size increases the time it takes to search all the keys by name is exponential, whereas searching by index is constant.

And note that we’re talking over 30 seconds to search the 215 size hash table, and I’ve got a pretty performant laptop with 8Gb memory, 2.7Ghz Intel processor with SSD drives.

Using a List

List elements can be named, right? They’re also more flexible than integer vectors since they can store any R object. What does their performance look like comparing name lookup to index lookup?

timings2 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht <- list()
lapply(strings, function(s) ht[[s]] <<- 0L)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht[[k]]==0L)[3]),
index = c('1_string','2_numeric')
)
})
p2 <- ggplot(timings2,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Lists')
p2

A little better but still exponential growth with named indexing. We cut our 30 seconds down to over 6 seconds for the large hash table, though.

Let’s see if we can do better.

Using an Environment

R environments store bindings of variables to values. In fact they are well suited to implementing a hash table since internally that’s how they are implemented!

e <- new.env()

# Assigning in the environment the usual way
with(e, foo <- 'bar') e
## <environment: 0x3e81d48>
ls.str(e)
## foo : chr "bar"

You can also use environments the same way one would use a list:

e$bar <- 'baz'
ls.str(e)
## bar : chr "baz"
## foo : chr "bar"

By default R environments are hashed, but you can also create them without hashing. Let’s evaluate the two:

timings3 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht1 <- new.env(hash=TRUE)
ht2 <- new.env(hash=FALSE)
lapply(strings, function(s){ ht1[[s]] <<- 0L; ht2[[s]] <<- 0L;})
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht1[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht2[[strings[k]]]==0L)[3]),
envir = c('2_hashed','1_unhashed')
)
})

Note that we’re performing the lookup by named string in both cases. The only difference is that ht1 is hashed and ht2 is not.

p3 <- ggplot(timings3,aes(x=size,y=seconds,group=envir)) +
geom_point(aes(color=envir)) + geom_line(aes(color=envir)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Environments')
p3

Bam! See that blue line? That’s near constant time for searching the entire 215 size hash table!

An interesting note about un-hashed environments: they are implemented with lists underneath the hood! You’d expect the red line of the above plot to mirror the red line of the list plot, but they differ ever so slightly in performance, with lists being faster.

In Conclusion

When you need a true associative array indexed by string, then you definitely want to use R hashed environments. They are more flexible than vectors as they can store any R object, and they are faster than lists since they are hashed. Plus you can work with them just like lists.

But using environments comes with caveats. I’ll explain in Part II.

转自:http://jeffreyhorner.tumblr.com/post/114524915928/hash-table-performance-in-r-part-i

Hash Table Performance in R: Part I(转)的更多相关文章

  1. [转载] 散列表(Hash Table)从理论到实用(上)

    转载自:白话算法(6) 散列表(Hash Table)从理论到实用(上) 处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通 ...

  2. DHT(Distributed Hash Table) Translator

    DHT(Distributed Hash Table) Translator What is DHT? DHT is the real core of how GlusterFS aggregates ...

  3. 数据结构 : Hash Table

    http://www.cnblogs.com/lucifer1982/archive/2008/06/18/1224319.html 作者:Angel Lucifer 引子 这篇仍然不讲并行/并发. ...

  4. Hash Map (Hash Table)

    Reference: Wiki  PrincetonAlgorithm What is Hash Table Hash table (hash map) is a data structure use ...

  5. 数据结构基础-Hash Table详解(转)

    理解Hash 哈希表(hash table)是从一个集合A到另一个集合B的映射(mapping). 映射是一种对应关系,而且集合A的某个元素只能对应集合B中的一个元素.但反过来,集合B中的一个元素可能 ...

  6. 散列表(hash table)——算法导论(13)

    1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...

  7. 哈希表(Hash Table)

    参考: Hash table - Wiki Hash table_百度百科 从头到尾彻底解析Hash表算法 谈谈 Hash Table 我们身边的哈希,最常见的就是perl和python里面的字典了, ...

  8. Berkeley DB的数据存储结构——哈希表(Hash Table)、B树(BTree)、队列(Queue)、记录号(Recno)

    Berkeley DB的数据存储结构 BDB支持四种数据存储结构及相应算法,官方称为访问方法(Access Method),分别是哈希表(Hash Table).B树(BTree).队列(Queue) ...

  9. 几种常见 容器 比较和分析 hashmap, map, vector, list ...hash table

    list支持快速的插入和删除,但是查找费时; vector支持快速的查找,但是插入费时. map查找的时间复杂度是对数的,这几乎是最快的,hash也是对数的.  如果我自己写,我也会用二叉检索树,它在 ...

随机推荐

  1. jQuery小测的总结

    1.在div元素中,包含了一个<span>元素,通过has选择器获取<div>元素中的<span>元素的语法是? 提示使用has() 答案: $(div:has(s ...

  2. 事务隔离级别与传播机制,spring+mybatis+atomikos实现分布式事务管理

    1.事务的定义:事务是指多个操作单元组成的合集,多个单元操作是整体不可分割的,要么都操作不成功,要么都成功.其必须遵循四个原则(ACID). 原子性(Atomicity):即事务是不可分割的最小工作单 ...

  3. oracle分区表的建立方法(包含已经存在的表要分区)分享,非常好

    非原创 Oracle提供了分区技术以支持VLDB(Very Large DataBase).分区表通过对分区列的判断,把分区列不同的记录,放到不同的分区中.分区完全对应用透明. Oracle的分区表可 ...

  4. Jquery对select下拉框的操作

    一.jQuery获取Select选择的Text和Value:语法解释: $("#select_id").change(function(){//code...});   //为Se ...

  5. MVC实现SSO

    近来工作无事,想做个SSO, 之前做过一个项目用到SSO,自己也没有看明白是个什么东西.现在正好有时间,所以想研究下. 先是从网上看到了SSO的思路: 三个站点:SiteA,SiteB,SiteMai ...

  6. 兼容IE6/7/8/9的css3插件

    <!DOCTYPE html><html><head>    <meta charset="UTF-8" />    <tit ...

  7. react基于nodejs简单的搭建与开发方法

    只需安装babel命令,即可将react的jsx写法转换成浏览器认识的js写法 1.安装nodejs(百度下载安装即可,自带npm) 2.cmd打开命令行,cd进入在自己的文件夹下 执行命令: npm ...

  8. 篇4 安卓app自动化测试-Appium API进阶

    篇4                 安卓app自动化测试-Appium API进阶 --lamecho辣么丑 1.1概要 大家好! 我是lamecho(辣么丑),今天是<安卓app自动化测试& ...

  9. Linux 基础(2)

    Linux 基础(二) 用户 组 及权限的相关操作 一.useradd命令选项:–u:指定用户的UID useradd –u 100 mu #指定mu的UID为100–g:指定用户所属的群组 user ...

  10. 【解决问题】解决python安装模块时UnicodeDecodeError

    安装模块时,出现报错: UnicodeDecodeError: 'ascii' codec can't decode byte 0xcb in position 68: ordinal not in ...