Hash Table Performance in R: Part I(转)
What Is It?
A hash table, or associative array, is a well known key-value data structure. In R there is no equivalent, but you do have some options. You can use a vector of any type, a list, or an environment.
But as you’ll see with all of these options their performance is compromised in some way. In the average case a lookupash tabl for a key should perform in constant time, or O(1), while in the worst case it will perform in O(n) time,n being the number of elements in the hash table.
For the tests below, we’ll implement a hash table with a few R data structures and make some comparisons. We’ll create hash tables with only unique keys and then perform a search for every key in the table. Here’s our unique random string creator function:
library(plyr)
library(ggplot2) # Create n unique strings. We use upper and lower case letters only. Create
# length 1 strings first, and if we haven't satisfied the number of strings
# requested, we'll create length 2 strings, and so on until we've created n
# strings.
#
# Returns them in random order
#
unique_strings <- function(n){
string_i <- 1
string_len <- 1
ans <- character(n)
chars <- c(letters,LETTERS)
new_strings <- function(len,pfx){
for(i in 1:length(chars)){
if (len == 1){
ans[string_i] <<- paste(pfx,chars[i],sep='')
string_i <<- string_i + 1
} else {
new_strings(len-1,pfx=paste(pfx,chars[i],sep=''))
}
if (string_i > n) return ()
}
}
while(string_i <= n){
new_strings(string_len,'')
string_len <- string_len + 1
}
sample(ans)
}
Using a Vector
All vectors in R can be named, so let’s see how looking up a vector element by name compares to looking up an element by index.
Here’s our fake hash table creator:
# Create a named integer vector size n. Note that elements are initialized to 0
#
fake_hash_table <- function(n){
ans <- integer(n)
names(ans) <- unique_strings(n)
ans
}
Now let’s create hash tables size 210 thru 215 and search each element:
timings1 <- adply(2^(10:15),.mar=1,.fun=function(i){
ht <- fake_hash_table(i)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i)ht[names(ht)[j]]==0L)[3],
system.time(for (k in 1:i)ht[k]==0L)[3]),
index = c('1_string','2_numeric')
)
})
We perform element lookup by using an equality test, so
ht[names(ht)[j]]==0L
performs the lookup using a named string, while
ht[k]==0L
performs the lookup by index.
p1 <- ggplot(timings1,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Integer Vectors')
p1
So we see that as the hash size increases the time it takes to search all the keys by name is exponential, whereas searching by index is constant.
And note that we’re talking over 30 seconds to search the 215 size hash table, and I’ve got a pretty performant laptop with 8Gb memory, 2.7Ghz Intel processor with SSD drives.
Using a List
List elements can be named, right? They’re also more flexible than integer vectors since they can store any R object. What does their performance look like comparing name lookup to index lookup?
timings2 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht <- list()
lapply(strings, function(s) ht[[s]] <<- 0L)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht[[k]]==0L)[3]),
index = c('1_string','2_numeric')
)
})
p2 <- ggplot(timings2,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Lists')
p2
A little better but still exponential growth with named indexing. We cut our 30 seconds down to over 6 seconds for the large hash table, though.
Let’s see if we can do better.
Using an Environment
R environments store bindings of variables to values. In fact they are well suited to implementing a hash table since internally that’s how they are implemented!
e <- new.env() # Assigning in the environment the usual way
with(e, foo <- 'bar') e
## <environment: 0x3e81d48>
ls.str(e)
## foo : chr "bar"
You can also use environments the same way one would use a list:
e$bar <- 'baz'
ls.str(e)
## bar : chr "baz"
## foo : chr "bar"
By default R environments are hashed, but you can also create them without hashing. Let’s evaluate the two:
timings3 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht1 <- new.env(hash=TRUE)
ht2 <- new.env(hash=FALSE)
lapply(strings, function(s){ ht1[[s]] <<- 0L; ht2[[s]] <<- 0L;})
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht1[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht2[[strings[k]]]==0L)[3]),
envir = c('2_hashed','1_unhashed')
)
})
Note that we’re performing the lookup by named string in both cases. The only difference is that ht1 is hashed and ht2 is not.
p3 <- ggplot(timings3,aes(x=size,y=seconds,group=envir)) +
geom_point(aes(color=envir)) + geom_line(aes(color=envir)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Environments')
p3
Bam! See that blue line? That’s near constant time for searching the entire 215 size hash table!
An interesting note about un-hashed environments: they are implemented with lists underneath the hood! You’d expect the red line of the above plot to mirror the red line of the list plot, but they differ ever so slightly in performance, with lists being faster.
In Conclusion
When you need a true associative array indexed by string, then you definitely want to use R hashed environments. They are more flexible than vectors as they can store any R object, and they are faster than lists since they are hashed. Plus you can work with them just like lists.
But using environments comes with caveats. I’ll explain in Part II.
转自:http://jeffreyhorner.tumblr.com/post/114524915928/hash-table-performance-in-r-part-i
Hash Table Performance in R: Part I(转)的更多相关文章
- [转载] 散列表(Hash Table)从理论到实用(上)
转载自:白话算法(6) 散列表(Hash Table)从理论到实用(上) 处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通 ...
- DHT(Distributed Hash Table) Translator
DHT(Distributed Hash Table) Translator What is DHT? DHT is the real core of how GlusterFS aggregates ...
- 数据结构 : Hash Table
http://www.cnblogs.com/lucifer1982/archive/2008/06/18/1224319.html 作者:Angel Lucifer 引子 这篇仍然不讲并行/并发. ...
- Hash Map (Hash Table)
Reference: Wiki PrincetonAlgorithm What is Hash Table Hash table (hash map) is a data structure use ...
- 数据结构基础-Hash Table详解(转)
理解Hash 哈希表(hash table)是从一个集合A到另一个集合B的映射(mapping). 映射是一种对应关系,而且集合A的某个元素只能对应集合B中的一个元素.但反过来,集合B中的一个元素可能 ...
- 散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...
- 哈希表(Hash Table)
参考: Hash table - Wiki Hash table_百度百科 从头到尾彻底解析Hash表算法 谈谈 Hash Table 我们身边的哈希,最常见的就是perl和python里面的字典了, ...
- Berkeley DB的数据存储结构——哈希表(Hash Table)、B树(BTree)、队列(Queue)、记录号(Recno)
Berkeley DB的数据存储结构 BDB支持四种数据存储结构及相应算法,官方称为访问方法(Access Method),分别是哈希表(Hash Table).B树(BTree).队列(Queue) ...
- 几种常见 容器 比较和分析 hashmap, map, vector, list ...hash table
list支持快速的插入和删除,但是查找费时; vector支持快速的查找,但是插入费时. map查找的时间复杂度是对数的,这几乎是最快的,hash也是对数的. 如果我自己写,我也会用二叉检索树,它在 ...
随机推荐
- Flex——弹性布局
今天在做项目时,要一个500*100的页面区域做三个橱窗,尼玛可是恶心死我了!光是计算左右内外边距,左右宽度,就废了一上午时间~~好吧,我承认我的数学老师挂得早! 正在苦逼的列公式,定位图片,浮动文字 ...
- 你的计算机也可以看懂世界——十分钟跑起卷积神经网络(Windows+CPU)
众所周知,如果你想研究Deep Learning,那么比较常用的配置是Linux+GPU,不过现在很多非计算机专业的同学有时也会想采用Deep Learning方法来完成一些工作,那么Linux+GP ...
- 【R】正态检验与R语言
正态检验与R语言 1.Kolmogorov–Smirnov test 统计学里, Kolmogorov–Smirnov 检验(亦称:K–S 检验)是用来检验数据是否符合某种分布的一种非参数检验,通过比 ...
- Android 代码库(自定义一套 Dialog通用提示框 )
做Android开发五年了,期间做做停停(去做后台开发,服务器管理),当回来做Android的时候,发现很生疏,好些控件以前写得很顺手,现在好像忘记些什么了,总要打开这个项目,打开那个项目 ...
- C++queue容器学习(详解)
一.queue模版类的定义在<queue>头文件中. queue与stack模版非常类似,queue模版也需要定义两个模版参数,一个是元素类型,一个是容器类型,元素类型是必要的,容器类型是 ...
- Python HTMLTestRunner生成网页自动化测试报告时中文编码报错UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6
1. 由于使用Python Selenium做网页自动化测试时,有截取网页上的中文信息保存到测试结果中,最终出现编码错误如下: File "D:/PycharmProjects/AutoTe ...
- Java计算两个程序运行时间
一.获取系统当前时间 long startTime = System.currentTimeMillis(); //获取开始时间 doSomething(); //测试的代码段 long endTim ...
- 我的Python---1
在学习Python两周后的今天,第一次做下总结.在昨天,我发现了这个博客,并且风也似的注册.申请,然后成功了,感谢管理员. 实际上,现在回想起来我第一次接触编程时在高一的计算机课上.那时候只有语数外理 ...
- [CTSC1999]【网络流24题】星际转移
Description 由于人类对自然资源的消耗,人们意识到大约在2300 年之后,地球就不能再居住了.于是在月球上建立了新的绿地,以便在需要时移民.令人意想不到的是,2177 年冬由于未知的原因,地 ...
- 在linux系统中跟踪高IO等待
原文作者:Jon Buys 原文地址:http://ostatic.com/blog/tracking-down-high-io-wait-in-linux 译者:Younger Liu,本作品采用知 ...