4869: [Shoi2017]相逢是问候

  先说点正经的……

  显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了。

  然后就随便做了。(3个log不知道是不是暴力啊)

  但是需要拓展欧拉定理:

  p与a不互质时,设c=b mod φ(p)(专门设出来是因为公式不能正常显示),如果b>=φ(p):$a^b ≡ a^{c+φ(p)}$(注意b<φ(p)的时候不能用)

  要证明的话可以用数学归纳法证。

可是题目翻车了……

大家都质疑题目数据有问题

得知这一点,窝的瓜心是崩溃的。

这可是省选题,关系到六个省的oier的命运。

我认识的几位dalao就参加了这场省选,有的进队,有的从此AFO。

过几天我也要省选了,要是出了类似的差错被卡退役,西瓜可是不会同意的。

为退役的选手们惋惜,也只能祝他们高考加油了。

(也许过几天就轮到我了呢?

瓜之将死,其言也善

upd:后来bzoj上数据更正了呢

#include<cstdio>
#include<algorithm>
#define MN 100001
#define lp p<<1
#define rp (p<<1)|1
using namespace std; int read_p,read_ca;
inline int read(){
read_p=;read_ca=getchar();
while(read_ca<''||read_ca>'') read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p;
}
int n,m,MOD,c,w=,S[MN],W[MN],a[MN],P[MN],num=,t,l,r,sum[MN<<];
bool bo[MN<<],bi[MN];
inline void M(int &x){while(x>=MOD)x-=MOD;}
inline int mi(int x,int y,int MOD,bool &bi){
int mmh=;
bool fx=;
while (y){
if (y&) bi|=fx|(1LL*x*mmh>=MOD),mmh=1LL*mmh*x%MOD;
fx|=1LL*x*x>=MOD;x=1LL*x*x%MOD;y>>=;
}
return mmh;
}
inline int phi(int p){
int o=;
for (int i=;P[i]*P[i]<=p&&i<=num;i++)
if (p%P[i]==){
p/=P[i];o*=P[i]-;
while (p%P[i]==) p/=P[i],o*=P[i];
}
if (p-) o*=p-;
return o;
}
void work(int p){
S[w++]=p;
if (p==) return;
work(phi(p));
}
int Mavis(int a,int L){
int mmh=a%S[L];
bool bi=a>=S[L];
for (int k=L;k;k--) mmh=mi(c,mmh+(bi?S[k]:),S[k-],bi);
return mmh;
}
void cg(int p,int l,int r,int L,int R){
if (bo[p]) return;
if (l==r) {W[l]++;bo[p]=(W[l]==w-);sum[p]=Mavis(a[l],W[l]);return;}
int mid=l+r>>;
if (R<=mid) cg(lp,l,mid,L,R);else
if (L>mid) cg(rp,mid+,r,L,R);else
cg(lp,l,mid,L,mid),cg(rp,mid+,r,mid+,R);
bo[p]=bo[lp]&bo[rp];
M(sum[p]=sum[lp]+sum[rp]);
}
void build(int p,int l,int r){
bo[p]=;
if (l==r) sum[p]=a[l];else{
int mid=l+r>>;
build(lp,l,mid);build(rp,mid+,r);
M(sum[p]=sum[lp]+sum[rp]);
}
}
int ask(int p,int l,int r,int L,int R){
if (l>=L&&r<=R) return sum[p];
if (l>R||r<L) return ;
int mid=l+r>>;
return (ask(lp,l,mid,L,R)+ask(rp,mid+,r,L,R))%MOD;
}
int main(){
register int i,j,k;
n=read();m=read();MOD=read();c=read();
for (i=;i*i<=MOD;i++){
if (!bo[i]) P[++num]=i;
for (j=;j<=num&&i*P[j]*i*P[j]<=MOD;j++) if (bo[i*P[j]]=,i%P[j]==) break;
}
work(MOD);S[w++]=;
for (i=;i<=n;i++) a[i]=read(),W[i]=;
build(,,n);
while (m--) if (t=read(),l=read(),r=read(),t==) cg(,,n,l,r);else printf("%d\n",ask(,,n,l,r));
}

upd:后来我退役了呢

BZOJ:4869: [Shoi2017]相逢是问候的更多相关文章

  1. bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]

    4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...

  2. BZOJ4869:[SHOI2017]相逢是问候——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4869 题面复制于洛谷:https://www.luogu.org/problemnew/show/P ...

  3. Bzoj4869: [Shoi2017]相逢是问候

    题面 传送门 Sol 摆定理 \[ a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~ ...

  4. [SHOI2017]相逢是问候

    Description 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,a ...

  5. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  6. 【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理

    Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两 ...

  7. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  8. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...

  9. [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Stat ...

随机推荐

  1. php通过system()调用Linux命令问题

    最近在做php和linux crontab的联调,发现php在linux下的权限问题需要引起注意,调试问题的过程中发现有许多问题前人说的比较零散,我在这里汇总,顺带抛砖引玉一下. 1.$result= ...

  2. xamarin android alertdialog详解

    说明一下:学习xamarin android一段时间,准备写一些xamarin android相关的例子,alertdialog也是使用的非常多得空间之一,非常感谢鸟巢上的小猪,我也是看着他写的教程学 ...

  3. bzoj 2119: 股市的预测

    Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...

  4. PHP判断手机号运营商(详细介绍附代码)

    道理很简单,知道手机号规则 进行正则判断就可以 移动:134.135.136.137.138.139.150.151.157(TD).158.159.187.188 联通:130.131.132.15 ...

  5. 统计nginx单个IP访问日志并获取IP来源

    #!/usr/bin/env python #coding=utf-8 import requests from urllib2 import urlopen # import lxml.html f ...

  6. Linux下防火墙配置

    查看防火墙的状态:/etc/init.d/iptables  status  或  service  iptables  status 1) 临时生效,重启后复原 开启: service  iptab ...

  7. badboy 录制脚本并并发脚本

    很久没有研究过接口相关的工具了,一个偶然的机会听说了 badboy,可以录制jemter脚本, 查了资料 还可以并发,于是乎,实践才知道. http://www.badboy.com.au/ 官网,我 ...

  8. Java中静态代码块、构造代码块、构造函数、普通代码块

    在Java中,静态代码块.构造代码块.构造函数.普通代码块的执行顺序是一个笔试的考点,通过这篇文章希望大家能彻底了解它们之间的执行顺序. 1.静态代码块 ①.格式 在java类中(方法中不能存在静态代 ...

  9. springBoot系列教程07:异常捕获

    发生异常是很正常的事,异常种类也是千奇百怪,发生异常并不可怕,只要正确的处理,并正确的返回错误信息并无大碍,如果不进行捕获或者处理,分分钟服务器宕机是很正常的事 所以处理异常时,最基本的要求就是发生异 ...

  10. Android -- NestedScrolling滑动机制

    1,如今NestedScrolling运用到很多地方了,要想好看一点的滑动变换,基本上就是使用这个来完成的,让我们来简单的了解一下. 2,NestedScrolling机制能够让父View和子View ...