这几天上海快下了五天的雨☔️☔️☔️☔️,淅淅沥沥,郁郁沉沉。

    一共存在四个api:

  • Source.actorRef,返回actorRef,该actorRef接收到的消息,将被下游消费者所消费。
  • Sink.actorRef,接收actorRef,做为数据流下游消费节点。
  • Source.actorPublisher,返回actorRef,使用于reactive stream的Publisher。
  • Sink.actorSubscriber,使用于reactive stream的Subscriber。

Source.actorRef

  val stringSourceinFuture=Source.actorRef[String](100,OverflowStrategy.fail) // 缓存最大为100,超出的话,将以失败告终
val hahaStrSource=stringSourceinFuture.filter(str=>str.startsWith("haha")) //source数据流中把不是以"haha"开头的字符串过滤掉
val actor=hahaStrSource.to(Sink.foreach(println)).run()
actor!"asdsadasd"
actor!"hahaasd"
actor!Success("ok")// 数据流成功完成并关闭

    "how to create a Source that can receive elements later via a method call?"在akka-http中经常遇见Source[T,N]的地方就是对文件上传和下载的功能的编码(文件IO)中,完成file=>Source[ByteString,_]的转化,或者Source(List(1,2,3,4,5))这种hello-world级别的玩具代码中,这些代码中在定义Source时,就已经确定流中数据是什么了。那么如何先定义流,而后给流传递数据呢?答案就是Source.actorRef。郑重说明:Source.actorRef没有背压策略(背压简单说就是生产者的生成速率大于消费者处理速率,导致数据积压)。

Sink.actorRef

class MyActor extends Actor{
override def receive: Receive = {
case "FIN"=>
println("完成了哇!!!")
context.stop(self)
case str:String =>
println("msgStr:"+str)
}
}
......
val actor=system.actorOf(Props[MyActor],"myActor")
val sendToActor=Sink.actorRef(actor,onCompleteMessage = "FIN")
val hahaStringSource=Source.actorRef[String](100,OverflowStrategy.dropHead).filter(str=>str.startsWith("haha"))
val actorReceive=hahaStringSource.to(sendToActor).run()
actorReceive!"hahasdsadsa1"
actorReceive!"hahasdsadsa2"
actorReceive!"hahasdsadsa3"
actorReceive!"hahasdsadsa4"
actorReceive!Success("ok")
//output
msgStr:hahasdsadsa1
msgStr:hahasdsadsa2
msgStr:hahasdsadsa3
msgStr:hahasdsadsa4
完成了哇!!!

    Sink作为数据流终端消费节点,常见用法比如Sink.foreach[T](t:T=>Unit)Sink.fold[U,T](z:U)((u:U,t:T)=>U)等等。Sink.actorRef用于指定某个actorRef实例,把本该数据流终端处理的数据全部发送给这个actorRef实例去处理。解释上述程序,Sink,actorRef需要说明哪一个actorRef来接收消息,并且在数据流上游完成时,这个actorRef会接收到什么样的消息作为完成的信号。我们可以看到onCompleteMessage这条消息并没有受到str=>str.startsWith("haha")这过滤条件的作用(同样的,Sink.actorRef没有处理背压功能,数据挤压过多只能按某些策略舍弃,或者直接失败)。

背压处理

以上Source.actorRefSink.actorRef均不支持背压策略。我们可以借助Source.actorPublisher或者Sink.actorPublisher在数据流的上游或者下游处理背压问题,但是需要去继承ActorPublisher[T]ActorSubscriber实现了处理逻辑。

Source.actorPublisher

在数据流上游处自己手动实现背压处理逻辑:

case object JobAccepted
case object JobDenied
case class Job(msg:String)
...
class MyPublisherActor extends ActorPublisher[Job]{
import akka.stream.actor.ActorPublisherMessage._
val MAXSize=10
var buf=Vector.empty[Job]
override def receive: Receive = {
case job:Job if buf.size==MAXSize =>
sender()!JobDenied //超出缓存 拒绝处理
case job:Job =>
sender()!JobAccepted //确认处理该任务
buf.isEmpty&&totalDemand>0 match {
case true =>
onNext(job)
case false=>
buf:+=job //先向缓存中存放job
deliverBuf() //当下游存在需求时,再去从缓存中消费job
}
case req@Request(n)=>
deliverBuf()
case Cancel=>
context.stop(self)
} def deliverBuf():Unit= totalDemand>0 match {
case true =>
totalDemand<=Int.MaxValue match {
case true =>
val (use,keep)=buf.splitAt(totalDemand.toInt) //相当于(buf.take(n),buf.drop(n))
buf=keep
use.foreach(onNext(_)) //把buf一份两半,前一半发送给下游节点消费,后一半保留
case false=>
buf.take(Int.MaxValue).foreach(onNext(_))
buf=buf.drop(Int.MaxValue)
deliverBuf() //递归
}
case false=>
}
}
...
val jobSource=Source.actorPublisher[Job](Props[MyPublisherActor])
val jobSourceActor=jobSource.via(Flow[Job].map(job=>Job(job.msg*2))).to(Sink.foreach(println)).run()
jobSourceActor!Job("ha")
jobSourceActor!Job("he")

    actorPublisher的函数签名def actorPublisher[T](props: Props): Source[T, ActorRef]。上述代码中totalDemand是由下游消费节点确定。onNext(e)方法在ActorPublisher中定义,作用是将数据传输给下游节点。当然还有onComplete()onError(ex)函数,也是用于通知下游节点作出相应处理。

Sink.actorSubscriber

case class Reply(id:Int)
...
class Worker extends Actor{
override def receive: Receive = {
case (id:Int,job:Job)=>
println("finish job:"+job)
sender()!Reply(id)
}
}
...
class CenterSubscriber extends ActorSubscriber{
val router={ //路由组
val routees=Vector.fill(3){ActorRefRoutee(context.actorOf(Props[Worker]))}
Router(RoundRobinRoutingLogic(),routees)
}
var buf=Map.empty[Int,Job]
override def requestStrategy: RequestStrategy = WatermarkRequestStrategy.apply(100)
import akka.stream.actor.ActorSubscriberMessage._
override def receive: Receive = {
case OnNext(job:Job)=>
val temp=(Random).nextInt(10000)->job
buf+=temp //记录并下发任务
router.route(temp,self)
case OnError(ex)=>
println("上游发生错误了::"+ex.getMessage)
case OnComplete=>
println("该数据流完成使命..")
case Reply(id)=>
buf-=id//当处理完成时,删去记录
}
}
...
val actor=Source.actorPublisher[Job](Props[MyPublisherActor]).to(Sink.actorSubscriber[Job](Props[CenterSubscriber])).run()
actor!Job("job1")
actor!Job("job2")
actor!Job("job3")

    ActorSubscriber可以接收如下几种消息类型:OnNext上游来的新消息、OnComplete上游已经结束数据流、OnError上游发生错误以及其他普通类型的消息。继承ActorSubscriber的子类都需要覆写requestStrategy以此来提供请求策略去控制数据流的背压(围绕requestDemand展开,何时向上游请求数据,一次请求多少数据等等问题)。

akka-stream与actor系统集成以及如何处理随之而来的背压问题的更多相关文章

  1. Akka Stream文档翻译:Motivation

    动机 Motivation The way we consume services from the internet today includes many instances of streami ...

  2. 报错:Flink Could not resolve substitution to a value: ${akka.stream.materializer}

    报错现象: Exception in thread "main" com.typesafe.config.ConfigException$UnresolvedSubstitutio ...

  3. Akka Stream之Graph

    最近在项目中需要实现图的一些操作,因此,初步考虑使用Akka Stream的Graph实现.从而学习了下: 一.介绍 我们知道在Akka Stream中有三种简单的线性数据流操作:Source/Flo ...

  4. Lagom学习 六 Akka Stream

    lagom中的stream 流数据处理是基于akka stream的,异步的处理流数据的.如下看代码: 流式service好处是: A: 并行:  hellos.mapAsync(8, name -& ...

  5. Akka系列(二):Akka中的Actor系统

    前言......... Actor模型作为Akka中最核心的概念,所以Actor在Akka中的组织结构是至关重要,本文主要介绍Akka中Actor系统. 1.Actor系统 Actor作为一种封装状态 ...

  6. Akka Stream文档翻译:Quick Start Guide: Reactive Tweets

    Quick Start Guide: Reactive Tweets 快速入门指南: Reactive Tweets (reactive tweets 大概可以理解为“响应式推文”,在此可以测试下GF ...

  7. akka实现的actor

    定义一个 Actor 类 要定义自己的Actor类,需要继承 Actor 并实现receive 方法. receive 方法需要定义一系列 case 语句(类型为 PartialFunction[An ...

  8. Akka简介与Actor模型

    Akka是一个构建在JVM上,基于Actor模型的的并发框架,为构建伸缩性强,有弹性的响应式并发应用提高更好的平台.本文主要是个人对Akka的学习和应用中的一些理解. Actor模型 Akka的核心就 ...

  9. akka设计模式系列-actor锚定

    actor锚定模式是指使用actorSelection对acor进行锚定的设计模式,也可以说是一个对actor的引用技巧.在某些情况下,我们可能需要能够根据Actor的path锚定对应的实例.简单来说 ...

随机推荐

  1. 2017计算机学科夏令营上机考试-A判决素数个数

    A:判决素数个数 总时间限制:  1000ms 内存限制:  65536kB 描述 输入两个整数X和Y,输出两者之间的素数个数(包括X和Y). 输入 两个整数X和Y(1 <= X,Y <= ...

  2. 谈谈form-data请求格式

    最近一直都比较忙,坚持月月更新博客的计划不得中止了,今天好不容易抽出点时间来说说最近项目中遇到的一个问题,有关request post请求格式中的multipart/form-data格式. 引言 最 ...

  3. node入门笔记

    看了<node入门>http://www.nodebeginner.org/index-zh-cn.html.有些疑难点记下来. 在导出模块的时候给出的代码是这样的 var http = ...

  4. zend Framework的MVC模式的搭建

    1.首先搭建Apache和MySQL,搭建的Apache中必须有PDO_MYSQL模块,如果没有,可以到官方下载. 1.配置HTTP.CONF (1)进入Apache的conf目录下,打开httpd. ...

  5. Java内存模型与Java线程实现原理

    硬件的效率与一致性 基于高速缓存的存储交互很好的解决了处理器和内存的速度矛盾,但是也为计算机系统带来了更高的复杂度,因为引入了一个新问题:缓存一致性. 在多处理器系统中,每个处理器都有自己的高速缓存, ...

  6. Java IO(2)阻塞式输入输出(BIO)的字节流与字符流

    在上文中<Java IO(1)基础知识——字节与字符>了解到了什么是字节和字符,主要是为了对Java IO中有关字节流和字符流有一个更好的了解. 本文所述的输出输出指的是Java中传统的I ...

  7. TCP/IP 协议栈 -- 编写UDP客户端注意细节

    上节我们说到了TCP 客户端编写的主要细节, 本节我们来看一下UDP client的几种情况,测试代码如下: server: #include <stdio.h> #include < ...

  8. Linux下如何彻底删除MySQL

    1.查找以前是否装有mysql 命令:rpm -qa|grep -i mysql可以看到如下图的所示: 说明之前安装了:MySQL-client-5.5.25a-1.rhel5MySQL-server ...

  9. php面向对象(OOP)编程完全教程(转载笔记,有兴趣可以看看))

    http://www.cnblogs.com/xiaochaohuashengmi/archive/2010/09/10/1823042.html

  10. 雅虎WEB前端网站优化 -- 34条军规

    雅虎给出了优化网站加载速度的34条法则(包括Yslow规则22条) 详细说明,下载转发 ponytail 的译文(来自帕兰映像). 1.Minimize HTTP Requests 减少HTTP请求 ...