这几天上海快下了五天的雨☔️☔️☔️☔️,淅淅沥沥,郁郁沉沉。

    一共存在四个api:

  • Source.actorRef,返回actorRef,该actorRef接收到的消息,将被下游消费者所消费。
  • Sink.actorRef,接收actorRef,做为数据流下游消费节点。
  • Source.actorPublisher,返回actorRef,使用于reactive stream的Publisher。
  • Sink.actorSubscriber,使用于reactive stream的Subscriber。

Source.actorRef

  val stringSourceinFuture=Source.actorRef[String](100,OverflowStrategy.fail) // 缓存最大为100,超出的话,将以失败告终
val hahaStrSource=stringSourceinFuture.filter(str=>str.startsWith("haha")) //source数据流中把不是以"haha"开头的字符串过滤掉
val actor=hahaStrSource.to(Sink.foreach(println)).run()
actor!"asdsadasd"
actor!"hahaasd"
actor!Success("ok")// 数据流成功完成并关闭

    "how to create a Source that can receive elements later via a method call?"在akka-http中经常遇见Source[T,N]的地方就是对文件上传和下载的功能的编码(文件IO)中,完成file=>Source[ByteString,_]的转化,或者Source(List(1,2,3,4,5))这种hello-world级别的玩具代码中,这些代码中在定义Source时,就已经确定流中数据是什么了。那么如何先定义流,而后给流传递数据呢?答案就是Source.actorRef。郑重说明:Source.actorRef没有背压策略(背压简单说就是生产者的生成速率大于消费者处理速率,导致数据积压)。

Sink.actorRef

class MyActor extends Actor{
override def receive: Receive = {
case "FIN"=>
println("完成了哇!!!")
context.stop(self)
case str:String =>
println("msgStr:"+str)
}
}
......
val actor=system.actorOf(Props[MyActor],"myActor")
val sendToActor=Sink.actorRef(actor,onCompleteMessage = "FIN")
val hahaStringSource=Source.actorRef[String](100,OverflowStrategy.dropHead).filter(str=>str.startsWith("haha"))
val actorReceive=hahaStringSource.to(sendToActor).run()
actorReceive!"hahasdsadsa1"
actorReceive!"hahasdsadsa2"
actorReceive!"hahasdsadsa3"
actorReceive!"hahasdsadsa4"
actorReceive!Success("ok")
//output
msgStr:hahasdsadsa1
msgStr:hahasdsadsa2
msgStr:hahasdsadsa3
msgStr:hahasdsadsa4
完成了哇!!!

    Sink作为数据流终端消费节点,常见用法比如Sink.foreach[T](t:T=>Unit)Sink.fold[U,T](z:U)((u:U,t:T)=>U)等等。Sink.actorRef用于指定某个actorRef实例,把本该数据流终端处理的数据全部发送给这个actorRef实例去处理。解释上述程序,Sink,actorRef需要说明哪一个actorRef来接收消息,并且在数据流上游完成时,这个actorRef会接收到什么样的消息作为完成的信号。我们可以看到onCompleteMessage这条消息并没有受到str=>str.startsWith("haha")这过滤条件的作用(同样的,Sink.actorRef没有处理背压功能,数据挤压过多只能按某些策略舍弃,或者直接失败)。

背压处理

以上Source.actorRefSink.actorRef均不支持背压策略。我们可以借助Source.actorPublisher或者Sink.actorPublisher在数据流的上游或者下游处理背压问题,但是需要去继承ActorPublisher[T]ActorSubscriber实现了处理逻辑。

Source.actorPublisher

在数据流上游处自己手动实现背压处理逻辑:

case object JobAccepted
case object JobDenied
case class Job(msg:String)
...
class MyPublisherActor extends ActorPublisher[Job]{
import akka.stream.actor.ActorPublisherMessage._
val MAXSize=10
var buf=Vector.empty[Job]
override def receive: Receive = {
case job:Job if buf.size==MAXSize =>
sender()!JobDenied //超出缓存 拒绝处理
case job:Job =>
sender()!JobAccepted //确认处理该任务
buf.isEmpty&&totalDemand>0 match {
case true =>
onNext(job)
case false=>
buf:+=job //先向缓存中存放job
deliverBuf() //当下游存在需求时,再去从缓存中消费job
}
case req@Request(n)=>
deliverBuf()
case Cancel=>
context.stop(self)
} def deliverBuf():Unit= totalDemand>0 match {
case true =>
totalDemand<=Int.MaxValue match {
case true =>
val (use,keep)=buf.splitAt(totalDemand.toInt) //相当于(buf.take(n),buf.drop(n))
buf=keep
use.foreach(onNext(_)) //把buf一份两半,前一半发送给下游节点消费,后一半保留
case false=>
buf.take(Int.MaxValue).foreach(onNext(_))
buf=buf.drop(Int.MaxValue)
deliverBuf() //递归
}
case false=>
}
}
...
val jobSource=Source.actorPublisher[Job](Props[MyPublisherActor])
val jobSourceActor=jobSource.via(Flow[Job].map(job=>Job(job.msg*2))).to(Sink.foreach(println)).run()
jobSourceActor!Job("ha")
jobSourceActor!Job("he")

    actorPublisher的函数签名def actorPublisher[T](props: Props): Source[T, ActorRef]。上述代码中totalDemand是由下游消费节点确定。onNext(e)方法在ActorPublisher中定义,作用是将数据传输给下游节点。当然还有onComplete()onError(ex)函数,也是用于通知下游节点作出相应处理。

Sink.actorSubscriber

case class Reply(id:Int)
...
class Worker extends Actor{
override def receive: Receive = {
case (id:Int,job:Job)=>
println("finish job:"+job)
sender()!Reply(id)
}
}
...
class CenterSubscriber extends ActorSubscriber{
val router={ //路由组
val routees=Vector.fill(3){ActorRefRoutee(context.actorOf(Props[Worker]))}
Router(RoundRobinRoutingLogic(),routees)
}
var buf=Map.empty[Int,Job]
override def requestStrategy: RequestStrategy = WatermarkRequestStrategy.apply(100)
import akka.stream.actor.ActorSubscriberMessage._
override def receive: Receive = {
case OnNext(job:Job)=>
val temp=(Random).nextInt(10000)->job
buf+=temp //记录并下发任务
router.route(temp,self)
case OnError(ex)=>
println("上游发生错误了::"+ex.getMessage)
case OnComplete=>
println("该数据流完成使命..")
case Reply(id)=>
buf-=id//当处理完成时,删去记录
}
}
...
val actor=Source.actorPublisher[Job](Props[MyPublisherActor]).to(Sink.actorSubscriber[Job](Props[CenterSubscriber])).run()
actor!Job("job1")
actor!Job("job2")
actor!Job("job3")

    ActorSubscriber可以接收如下几种消息类型:OnNext上游来的新消息、OnComplete上游已经结束数据流、OnError上游发生错误以及其他普通类型的消息。继承ActorSubscriber的子类都需要覆写requestStrategy以此来提供请求策略去控制数据流的背压(围绕requestDemand展开,何时向上游请求数据,一次请求多少数据等等问题)。

akka-stream与actor系统集成以及如何处理随之而来的背压问题的更多相关文章

  1. Akka Stream文档翻译:Motivation

    动机 Motivation The way we consume services from the internet today includes many instances of streami ...

  2. 报错:Flink Could not resolve substitution to a value: ${akka.stream.materializer}

    报错现象: Exception in thread "main" com.typesafe.config.ConfigException$UnresolvedSubstitutio ...

  3. Akka Stream之Graph

    最近在项目中需要实现图的一些操作,因此,初步考虑使用Akka Stream的Graph实现.从而学习了下: 一.介绍 我们知道在Akka Stream中有三种简单的线性数据流操作:Source/Flo ...

  4. Lagom学习 六 Akka Stream

    lagom中的stream 流数据处理是基于akka stream的,异步的处理流数据的.如下看代码: 流式service好处是: A: 并行:  hellos.mapAsync(8, name -& ...

  5. Akka系列(二):Akka中的Actor系统

    前言......... Actor模型作为Akka中最核心的概念,所以Actor在Akka中的组织结构是至关重要,本文主要介绍Akka中Actor系统. 1.Actor系统 Actor作为一种封装状态 ...

  6. Akka Stream文档翻译:Quick Start Guide: Reactive Tweets

    Quick Start Guide: Reactive Tweets 快速入门指南: Reactive Tweets (reactive tweets 大概可以理解为“响应式推文”,在此可以测试下GF ...

  7. akka实现的actor

    定义一个 Actor 类 要定义自己的Actor类,需要继承 Actor 并实现receive 方法. receive 方法需要定义一系列 case 语句(类型为 PartialFunction[An ...

  8. Akka简介与Actor模型

    Akka是一个构建在JVM上,基于Actor模型的的并发框架,为构建伸缩性强,有弹性的响应式并发应用提高更好的平台.本文主要是个人对Akka的学习和应用中的一些理解. Actor模型 Akka的核心就 ...

  9. akka设计模式系列-actor锚定

    actor锚定模式是指使用actorSelection对acor进行锚定的设计模式,也可以说是一个对actor的引用技巧.在某些情况下,我们可能需要能够根据Actor的path锚定对应的实例.简单来说 ...

随机推荐

  1. web-iPhone X

    题目: 解题思路: 第一次看到html里只有字其他啥也没有的题,一脸懵逼,学长提示抓包改包,于是开始我的苦逼解题. 0x01 抓包 0x02 改包 由于题目说只有iphoneX才能接受这个websit ...

  2. SurfaceView 使用demo 飞机游戏小样

    本demo 主要使用了surfaceview 画图. 1.在线程中对canvas操作. 2.实现画图 3.surfaceView 继承了view 可以重写ontouchevent方法来操作输入. 代码 ...

  3. 自学HTML5难 我们应该怎么做

    互联网发展到今天,越来越多的技术岗位人才出现了稀缺的状态,就拿当前的HTML5来讲,基本成为了每家互联网公司不可缺少的人才.如果抓住这个机会,把HTML5搞好,那么前途不可限量,而且这门行业是越老越吃 ...

  4. js的学习(window对象的使用)

    open方法: //语法:var winObj = window.open([url][,name][,options]);  //参数:url:准备在新窗口中显示那个文件.url可以为空字符串,表示 ...

  5. ngixn配置

    nginx 配置入门 之前的nginx配置是对nginx配置文件的具体含义进行讲解,不过对于nginx的新手可能一头雾水. 今天看到个文档不错,翻译过来分享给大家,可以让新手更详细地了解nginx配置 ...

  6. mysql的explain

    explain 一般用于分析sql.  如下 [SQL] 纯文本查看 复制代码 ? 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 2 ...

  7. angularjs 给封装的模态框元素传值,和实现兄弟传值

    本例实现封装的元素所放的位置不同,而选择不同的传值,这里举例封装了bootstrap模态框,以后也方便大家去直接使用.方法举例如下:首先主页调用css/js有: <link rel=" ...

  8. 为并发而生的 ConcurrentHashMap(Java 8)

    HashMap 是我们日常最常见的一种容器,它以键值对的形式完成对数据的存储,但众所周知,它在高并发的情境下是不安全的.尤其是在 jdk 1.8 之前,rehash 的过程中采用头插法转移结点,高并发 ...

  9. phpcms的验证码替换 及 phpcms实现全站搜索功能

    在使用phpcms替换网页的时候,除了正常的替换栏目.内容页等,其他的什么验证码啦,提交表单了,搜索功能了,这些在替换的时候可能会对一些默认文件有一些小小 的改变 下面就是自己在失败中成功的过程,最后 ...

  10. Hibernate学习(二)关系映射----基于外键的单向一对一

    事实上,单向1-1与N-1的实质是相同的,1-1是N-1的特例,单向1-1与N-1的映射配置也非常相似.只需要将原来的many-to-one元素增加unique="true"属性, ...