[洛谷P2627] 修剪草坪
传送门:>Here<
题意:不能有连续超过$k$个奶牛的一段,求最大的和
思路分析
Dp还是容易看出来的。
我的第一感觉是一维,$f[i]$表示前i头奶牛的最大效率。其实这也是可以解的,具体方法将会在后文介绍。
考虑二维的解法,$f[i][0]$表示奶牛i不参与时的最大效率,$f[i][1]$表示奶牛i参与。我们知道,在前$k$头奶牛中必定有一头奶牛不参与——对于$f[i][0]$转移很简单,由于奶牛$i$不参与,一定是选择继承,所以必定有$$f[i][0] = Max(f[i-1][0], f[i-1][1])$$. 而$f[i][1]$可以利用$f[i-j][0]$(0<j<K)来转移:$$f[i][1] = Max(f[i-j][0] + sum[i] - sum[i-j])$$
这个方程的意思就是$i-j$这头奶牛不选,并继承最优子结构$f[i-j][0]$,然后$i-j$之后的奶牛全部选择,于是用一个前缀和来维护即可。整理方程发现,$sum[i]$是确定的,于是可以将它提出$Max$之外,得到$$f[i][1] = Max(f[i-j][0] - sum[i-j]) + sum[i]$$我们发现这个方程就只与i-j有关了,并且是个定长区间的最大值——很容易让我们联想到滑动窗口问题,于是通过单调队列来解决就好了。
下面的代码贴的是以上之中方法……
刚才我们提到了可以用一维来解决,即$f[i]$表示前$i$头奶牛的最大效率。其实是与二维一模一样的,二维实在是多此一举。由于$i-j$根本不选,我们可以直接继承$f[i-j-1]$,在加上前缀和,就有了方程$$f[i][1] = Max(f[i-j-1] - sum[i-j]) + sum[i]$$
Code
long long
/*By QiXingzhi*/
#include <cstdio>
#define N (100010)
#define INF (0x3f3f3f3f)
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
#define r read()
typedef long long ll;
#define int ll
using namespace std;
inline int read(){
; ; register int c = getchar();
')) c = getchar();
, c = getchar();
) +(x << ) + c - ', c = getchar();
return x * w;
}
,t;
],q[N],s[N];
inline void Push(int w){
]-s[w] > f[q[t]][]-s[q[t]]) --t;
q[++t] = w;
}
#undef int
int main(){
#define int ll
n=r,k=r;
; i <= n; ++i){
a[i]=r;
s[i] = s[i-]+a[i];
}
f[][] = ;
f[][] = a[];
Push();
Push();
; i <= n; ++i){
f[i][] = Max(f[i-][], f[i-][]);
while(h<=t && q[h] < i-k) ++h;
f[i][] = f[q[h]][] + s[i] - s[q[h]];
Push(i);
}
printf(],f[n][]));
;
}
[洛谷P2627] 修剪草坪的更多相关文章
- 洛谷 P2627 修剪草坪 题解
P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...
- P2627 修剪草坪
P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...
- luogu P2627 修剪草坪
传送门 单调队列优化dp板子 表示不大想写详细做法,自己看代码吧qwq (懒) 注意细节,不然就会跟我一样WA4次 // luogu-judger-enable-o2 #include<bits ...
- P2627 修剪草坪 (单调队列优化$dp$)
题目链接 Solution 70分很简单的DP,复杂度 O(NK). 方程如下: \[f[i][1]=max(f[j][0]+sum[i]-sum[j])\]\[f[i][0]=max(f[i-1][ ...
- 洛谷P2627 [USACO11OPEN]Mowing the Lawn G (单调队列优化DP)
一道单调队列优化DP的入门题. f[i]表示到第i头牛时获得的最大效率. 状态转移方程:f[i]=max(f[j-1]-sum[j])+sum[i] ,i-k<=j<=i.j的意义表示断点 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
随机推荐
- C\S 架构 DNS服务器 交换机 路由器
------------------------只有不快的斧,没有劈不开的柴;只有想不到的人,没有做不到的事.想干总会有办法,不想干总会有理由!# -------------------------- ...
- ios 后台下载,断点续传总结
2018年12月05日 16:09:00 weixin_34101784 阅读数:5 https://blog.csdn.net/weixin_34101784/article/details/875 ...
- Python之操作Excel
使用之前先导入三个模块: import xlwt #只能写Excel import xlrd #只能读Excel import xlutils #修改Excel,在原来的基础上修改 一.写EXCEL ...
- JSP 快速入门
目录 生命周期 9大对象 常用指令 基本语法 表达式语言(EL) jstl介绍 常用的jstl标签 生命周期 我们虽然写的是jsp,代码中包含了html.css.js,以及Java代码,但是真正执行的 ...
- 【学习总结】Master课程 之 虚拟化与云计算
Section 1- Cloud Computing Introduction-云计算介绍 1-What can Cloud Computing do? - 云计算可以做什么? 服务模式:美国国家标准 ...
- Linux 光盘挂载步骤
mount -t fs_type device dir 挂载操作 常见的文件系统类型 Windows :ntfs.fat32 Linux:ext3.ext4.xfs 光盘: iso9660 挂载光盘: ...
- javascript博客爱心特效代码与代码解析
这个鼠标点击出现爱心的特效经常在别的博客里见到,于是我查了度娘后拿来直接用上了. 虽然不知道原作者是谁,但肯定是个大神,只有通过观摩他/她的代码膜拜一下啦. 直接上代码(解析在代码注释里): // 自 ...
- Azure系列1.1.2 —— 用于 IntelliJ 的 Azure 工具包的登录说明
(文中大部分内容(95%)Azure官网上有,我只是把我自己实际操作中遇到的问题在这里阐述一下.) 先决条件 若要完成文章中的步骤,需要安装用于 IntelliJ 的 Azure 工具包,该工具包需要 ...
- 《Effective C++》让自己习惯C++:条款1-条款4
条款1:视C++为一个语言联邦 可以将C++分为4个层次: 1.C:C++实在C语言的基础上发展而来的. 2:Object-Oriented C++:C++面向对象. 3:Template C++:C ...
- Prime Permutation
Prime Permutation 原题地址: http://codeforces.com/problemset/problem/123/A 题目大意: 给你一个字符串(只包含小写字母),从1开始存放 ...