[洛谷P2627] 修剪草坪
传送门:>Here<
题意:不能有连续超过$k$个奶牛的一段,求最大的和
思路分析
Dp还是容易看出来的。
我的第一感觉是一维,$f[i]$表示前i头奶牛的最大效率。其实这也是可以解的,具体方法将会在后文介绍。
考虑二维的解法,$f[i][0]$表示奶牛i不参与时的最大效率,$f[i][1]$表示奶牛i参与。我们知道,在前$k$头奶牛中必定有一头奶牛不参与——对于$f[i][0]$转移很简单,由于奶牛$i$不参与,一定是选择继承,所以必定有$$f[i][0] = Max(f[i-1][0], f[i-1][1])$$. 而$f[i][1]$可以利用$f[i-j][0]$(0<j<K)来转移:$$f[i][1] = Max(f[i-j][0] + sum[i] - sum[i-j])$$
这个方程的意思就是$i-j$这头奶牛不选,并继承最优子结构$f[i-j][0]$,然后$i-j$之后的奶牛全部选择,于是用一个前缀和来维护即可。整理方程发现,$sum[i]$是确定的,于是可以将它提出$Max$之外,得到$$f[i][1] = Max(f[i-j][0] - sum[i-j]) + sum[i]$$我们发现这个方程就只与i-j有关了,并且是个定长区间的最大值——很容易让我们联想到滑动窗口问题,于是通过单调队列来解决就好了。
下面的代码贴的是以上之中方法……
刚才我们提到了可以用一维来解决,即$f[i]$表示前$i$头奶牛的最大效率。其实是与二维一模一样的,二维实在是多此一举。由于$i-j$根本不选,我们可以直接继承$f[i-j-1]$,在加上前缀和,就有了方程$$f[i][1] = Max(f[i-j-1] - sum[i-j]) + sum[i]$$
Code
long long
/*By QiXingzhi*/ #include <cstdio> #define N (100010) #define INF (0x3f3f3f3f) #define Max(a,b) (((a)>(b)) ? (a) : (b)) #define Min(a,b) (((a)<(b)) ? (a) : (b)) #define r read() typedef long long ll; #define int ll using namespace std; inline int read(){ ; ; register int c = getchar(); ')) c = getchar(); , c = getchar(); ) +(x << ) + c - ', c = getchar(); return x * w; } ,t; ],q[N],s[N]; inline void Push(int w){ ]-s[w] > f[q[t]][]-s[q[t]]) --t; q[++t] = w; } #undef int int main(){ #define int ll n=r,k=r; ; i <= n; ++i){ a[i]=r; s[i] = s[i-]+a[i]; } f[][] = ; f[][] = a[]; Push(); Push(); ; i <= n; ++i){ f[i][] = Max(f[i-][], f[i-][]); while(h<=t && q[h] < i-k) ++h; f[i][] = f[q[h]][] + s[i] - s[q[h]]; Push(i); } printf(],f[n][])); ; }
[洛谷P2627] 修剪草坪的更多相关文章
- 洛谷 P2627 修剪草坪 题解
P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...
- P2627 修剪草坪
P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...
- luogu P2627 修剪草坪
传送门 单调队列优化dp板子 表示不大想写详细做法,自己看代码吧qwq (懒) 注意细节,不然就会跟我一样WA4次 // luogu-judger-enable-o2 #include<bits ...
- P2627 修剪草坪 (单调队列优化$dp$)
题目链接 Solution 70分很简单的DP,复杂度 O(NK). 方程如下: \[f[i][1]=max(f[j][0]+sum[i]-sum[j])\]\[f[i][0]=max(f[i-1][ ...
- 洛谷P2627 [USACO11OPEN]Mowing the Lawn G (单调队列优化DP)
一道单调队列优化DP的入门题. f[i]表示到第i头牛时获得的最大效率. 状态转移方程:f[i]=max(f[j-1]-sum[j])+sum[i] ,i-k<=j<=i.j的意义表示断点 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
随机推荐
- H5 71-网易注册界面4
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- iOS NSDictionary JSON 相互转换
/*! * @brief 把格式化的JSON格式的字符串转换成字典 * @param jsonString JSON格式的字符串 * @return 返回字典 */ + (NSDictionary * ...
- sql定时备份
老规矩,直接上代码: ) set @name='C:\Backup\MyStudy_'+ ),)+'.bak' BACKUP DATABASE[MyStudy]TO DISK=@name WITH N ...
- TCP粘包问题解析与解决
一.粘包分析 作者本人在写一个FTP项目时,在文件的上传下载模块遇到了粘包问题.在网上找了一些解决办法,感觉对我情况都不好用,因此自己想了个比较好的解决办法,提供参考 1.1 粘包现象 在客户端与服务 ...
- Redis使用和部分源码剖析以及Django缓存和redis的关系
0.特点: a.持久化 b.单进程.单线程 c.5大数据类型 d.用于操作内存的软件. e.虽然是缓存数据库但是可以做持久化的工作 MySQL是一个软件,帮助开发者对一台机器的硬盘进行操作 ...
- oracle一些单记录函数
单记录函数 1.0 NVL() 作用:从两个表达式返回一个非NULL值 用法:NVL(表达式1, 表达式2) 如果表达式1的结果不为NULL,返回表达式1的结果:如果表达式1的结果为NULL,返回表达 ...
- Latex常用软件
Linux texMaker sudo apt-get install texlive-full sudo apt-get install texmaker
- 将选中项的value值赋给select的title
$('select').change(function () { $(this).attr("title",$(this).find("option:selected&q ...
- 校园电商项目4——SSM各项配置
步骤一:数据库连接文件 jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/school_o2o?useUni ...
- 前端开发之css
<!--页面中的组成部分通常随便打开一个网页,有文字,图片,视频,表格,音频,表单(注册信息) css 属性/尺寸/边框/背景 1.css的尺寸属性,就是大小width max-width mi ...