题目描述

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a 。操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

输入输出格式

输入格式:

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 行每行两个正整数 from, to , 表示该树中存在一条边 (from, to) 。再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

输出格式:

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

输入输出样例

输入样例#1: 复制

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
输出样例#1: 复制

6
9
13

说明

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不

会超过 10^6 。

树链剖分的裸题

每次暴力更改就好

注意这题需要开long long

#include<iostream>
#include<cstdio>
#include<cstring>
#define ls k<<1
#define rs k<<1|1
#define LL long long
using namespace std;
const LL MAXN=1e6+;
inline char nc()
{
static char buf[MAXN],*p1=buf,*p2=buf;
return p1==p2&&(p1=(p2=buf)+fread(buf,,MAXN,stdin),p1==p2)?EOF:++*p1;
}
inline LL read()
{
char c=getchar();LL x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'',c=getchar();}
return x*f;
}
LL root=;
struct node
{
LL u,v,w,nxt;
}edge[MAXN];
LL head[MAXN];
LL num=;
inline void AddEdge(LL x,LL y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
struct Tree
{
LL l,r,f,w,siz;
}T[MAXN];
LL a[MAXN],b[MAXN],tot[MAXN],idx[MAXN],deep[MAXN],son[MAXN],top[MAXN],fa[MAXN],cnt=;
void update(LL k)
{
T[k].w=T[ls].w+T[rs].w;
}
void PushDown(LL k)
{
if(!T[k].f) return ;
T[ls].w+=T[k].f*T[ls].siz;
T[rs].w+=T[k].f*T[rs].siz;
T[ls].f+=T[k].f;
T[rs].f+=T[k].f;
T[k].f=;
}
LL dfs1(LL now,LL f,LL dep)
{
deep[now]=dep;
tot[now]=;
fa[now]=f;
LL maxson=-;
for(LL i=head[now];i!=-;i=edge[i].nxt)
{
if(edge[i].v==f) continue;
tot[now]+=dfs1(edge[i].v,now,dep+);
if(tot[edge[i].v]>maxson) maxson=tot[edge[i].v],son[now]=edge[i].v;
}
return tot[now];
}
void dfs2(LL now,LL topf)
{
idx[now]=++cnt;
a[cnt]=b[now];
top[now]=topf;
if(!son[now]) return ;
dfs2(son[now],topf);
for(LL i=head[now];i!=-;i=edge[i].nxt)
if(!idx[edge[i].v])
dfs2(edge[i].v,edge[i].v);
}
void Build(LL k,LL ll,LL rr)
{
T[k].l=ll;T[k].r=rr;T[k].siz=rr-ll+;
if(ll==rr)
{
T[k].w=a[ll];
return ;
}
LL mid=(ll+rr)>>;
Build(ls,ll,mid);
Build(rs,mid+,rr);
update(k);
}
void PointAdd(LL k,LL pos,LL val)
{
if(T[k].l==T[k].r)
{
T[k].w+=val;
return ;
}
PushDown(k);
LL mid=(T[k].l+T[k].r)>>;
if(pos<=mid) PointAdd(ls,pos,val);
if(pos>mid) PointAdd(rs,pos,val);
update(k);
}
void IntervalAdd(LL k,LL ll,LL rr,LL val)
{
if(ll<=T[k].l&&T[k].r<=rr)
{
T[k].w+=T[k].siz*val;
T[k].f+=val;
return ;
}
PushDown(k);
LL mid=(T[k].l+T[k].r)>>;
if(ll<=mid) IntervalAdd(ls,ll,rr,val);
if(rr>mid) IntervalAdd(rs,ll,rr,val);
update(k);
}
LL IntervalAsk(LL k,LL ll,LL rr)
{
LL ans=;
if(ll<=T[k].l&&T[k].r<=rr)
{
ans+=T[k].w;
return ans;
}
PushDown(k);
LL mid=(T[k].l+T[k].r)>>;
if(ll<=mid) ans+=IntervalAsk(ls,ll,rr);
if(rr>mid) ans+=IntervalAsk(rs,ll,rr);
return ans;
}
LL TreeSum(LL x,LL y)
{
LL ans=;
while(top[x]!=top[y])//不在同一条链内
{
if(deep[top[x]]<deep[top[y]]) swap(x,y);
ans+=IntervalAsk(,idx[top[x]],idx[x]);
x=fa[top[x]];
}
if(deep[x]>deep[y]) swap(x,y);
ans+=IntervalAsk(,idx[x],idx[y]);
return ans;
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(head,-,sizeof(head));
LL N=read(),M=read();
for(LL i=;i<=N;i++) b[i]=read();
for(LL i=;i<=N-;i++)
{
LL x=read(),y=read();
AddEdge(x,y);AddEdge(y,x);
}
dfs1(root,,);
dfs2(root,root);
Build(,,N);
while(M--)
{
LL opt=read(),x,val;
if(opt==)
{
x=read(),val=read();
PointAdd(,idx[x],val);
}
else if(opt==)
{
x=read(),val=read();
IntervalAdd(,idx[x],idx[x]+tot[x]-,val);
}
else
{
x=read();
printf("%lld\n",TreeSum(root,x));
}
}
return ;
}

洛谷P3178 [HAOI2015]树上操作的更多相关文章

  1. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

  2. 洛谷P3178 [HAOI2015]树上操作 题解 树链剖分+线段树

    题目链接:https://www.luogu.org/problem/P3178 这道题目是一道树链剖分的模板题. 但是在解决这道问题的同事刷新了我的两个认识: 第一个认识是:树链剖分不光可以处理链, ...

  3. 洛谷P3178 [HAOI2015]树上操作(线段树)

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  4. 洛谷 P3178 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  5. 洛谷——P3178 [HAOI2015]树上操作

    https://www.luogu.org/problem/show?pid=3178#sub 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 ...

  6. 洛谷 3178 [HAOI2015]树上操作

    [题解] 就是个树链剖分的模板题. #include<cstdio> #include<algorithm> #include<cstring> #define L ...

  7. P3178 [HAOI2015]树上操作

    P3178 [HAOI2015]树上操作 思路 板子嘛,其实我感觉树剖没啥脑子 就是debug 代码 #include <bits/stdc++.h> #define int long l ...

  8. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  9. BZOJ4033或洛谷3177 [HAOI2015]树上染色

    BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...

随机推荐

  1. postgresql 安装文档

    tar xf postgresql-9.4.5.tar.gz cd postgresql-9.4.5 yum grouplist yum grouplist|grep Deve yum groupin ...

  2. JavaScript笔记整理

    整理一篇工作中的JavaScript脚本笔记,不定时更新,笔记来自网上资料或者自己经验归纳. (1) 获取Url绝对路径 function getUrlRelativePath() { var url ...

  3. 【app】自动化必备之adb使用

    1.1 Adb介绍 adb(android debug bridge)是android sdk自带的一个工具 Adb是用来连接android设备和PC端的桥梁,通过adb工具,用户可以在PC端对手机进 ...

  4. pyengine介绍及使用

    一个可以通过HTTP请求动态执行Python 代码的HTTP服务器,还自带一个装饰器来执行时间较长的任务. 使用方法 1  pip install pyengine 2 pyengine run -d ...

  5. 解决删除chrome注册表残留问题

    将下面这个全部复制下来并粘贴到命名为“remove.reg”的文件中.双击执行即可  Windows Registry Editor Version 5.00 ;WARNING, this file  ...

  6. HP服务器设置iLO

    HP服务器设置iLO步凑 1.开机出现界面—按下F11进入Boot Menu: 2.选择Generic USB Boot回车: 3.选择System Configuration回车: 4.选择iLO ...

  7. mysql 开发基础系列18 存储过程和函数(下)

    1. 光标的使用(游标) 在存储过程和函数中可以使用光标对结果集进行循环的处理,光标使用包括光标的声明,open ,fetch,close. 下面在存储过程中使用一个光标, 这个举例中光标里的逻辑不重 ...

  8. .NET Core + Abp踩坑和填坑记录(1)

    1. Net Core 的DI和Abp的DI并存 Startup中 ConfigureServices返回值改为IServiceProvider 在ConfigureServices最后调用retur ...

  9. Spring系列之IOC的原理及手动实现

    目录 Spring系列之IOC的原理及手动实现 Spring系列之DI的原理及手动实现 导语 Spring是一个分层的JavaSE/EE full-stack(一站式) 轻量级开源框架.也是几乎所有J ...

  10. Tomcat8源码笔记(七)组件启动Server Service Engine Host启动

    一.Tomcat启动的入口 Tomcat初始化简单流程前面博客介绍了一遍,组件除了StandardHost都有博客,欢迎大家指文中错误.Tomcat启动类是Bootstrap,而启动容器启动入口位于 ...