【题目】给定数组arr,arr中所有的值都为正数且不重复。每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim代表要找的钱数,求组成aim的最少货币数。

【代码1】:时间与额外空间复杂度O(N*aim)

import numpy as np
from xmlrpc.client import MAXINT def mincoin(arr,aim):
if len(arr)<0:
print("No coin provided for change!")
arr.sort()
arr.reverse()
if aim == 0:
print("Aim is 0, no need to change!")
dp = np.zeros((len(arr),aim+1))
i = 0
j = 0
left = aim
maxval = MAXINT for j in range(1,aim+1):
dp[0][j] = maxval
if j-arr[0] >=0 and dp[0][j-arr[0]] != maxval:
dp[0][j] = dp[0][j-arr[0]]+1 for i in range(1,len(arr)):
for j in range(1,aim+1):
left = maxval
if j-arr[i] >=0 and dp[i][j-arr[i]] != maxval:
left = dp[i][j-arr[i]]+1
dp[i][j] = min(left,dp[i-1][j]) print('Need ',int(dp[len(arr)-1][aim]),' Coins.') # ===CALL === #
a = [3,5,2]
tar = 20
mincoin(a,tar)

  

【代码2】:时间复杂度O(N*aim),额外空间复杂度O(aim)

import numpy as np
from xmlrpc.client import MAXINT def mincoin(arr,aim):
if len(arr)<0:
print("No coin provided for change!")
arr.sort()
arr.reverse()
if aim == 0:
print("Aim is 0, no need to change!")
dp = np.zeros((1,aim+1))[0]
i = 0
j = 0
maxval = MAXINT for j in range(1,aim+1):
dp[j] = maxval
if j-arr[0] >=0 and dp[j-arr[0]] != maxval:
dp[j] = dp[j-arr[0]]+1 left = 0
for i in range(1,len(arr)-1):
for j in range(1,aim+1):
left = maxval
if j-arr[i] >=0 and dp[j-arr[i]] != maxval:
left = dp[j-arr[i]]+1
dp[j] = min(left,dp[j]) #print(dp)
print('Need ',int(dp[aim]),' Coins.') # ===CALL === #
a = [5,2,3]
tar = 20
mincoin(a,tar)

【代码3】:时间复杂度O(N*aim),额外空间复杂度O(aim) 

在原书也就是【代码2】的基础上,下面的执行效率会更高一点点,但是这种算法对于【代码1】的复杂度是有问题的。 

import numpy as np
from xmlrpc.client import MAXINT def mincoin(arr,aim):
if len(arr)<0:
print("No coin provided for change!")
arr.sort()
arr.reverse()
if aim == 0:
print("Aim is 0, no need to change!")
dp = np.zeros((1,aim+1))[0]
i = 0
j = 0
maxval = MAXINT for j in range(1,aim+1):
dp[j] = maxval
if j-arr[0] >=0 and dp[j-arr[0]] != maxval:
dp[j] = dp[j-arr[0]]+1 left = 0
for i in range(1,len(arr)):
for j in range(j-arr[i],aim+1):
left = maxval
if dp[j-arr[i]] != maxval:
left = dp[j-arr[i]]+1
dp[j] = min(left,dp[j]) #print(dp)
print('Need ',int(dp[aim]),' Coins.') # ===CALL === #
a = [5,2,3]
tar = 20
mincoin(a,tar)

  

算法之Python实现 - 001 : 换钱的最少货币数的更多相关文章

  1. OptimalSolution(1)--递归和动态规划(2)矩阵的最小路径和与换钱的最少货币数问题

    一.矩阵的最小路径和 1 3 5 9 1 4 9 18 1 4 9 18 8 1 3 4 9 9 5 8 12 5 0 6 1 14 14 5 11 12 8 8 4 0 22 22 13 15 12 ...

  2. 算法之Python实现 - 002 : 换钱的最少货币数补充(每种货币只能使用一次)

    [题目]:给定数组arr,arr中所有的值都为正数且不重复.每个值代表一种面值的货币,每种面值的货币仅可以使用一张,再给定一个整数aim代表要找的钱数,求组成aim的最少货币数. [代码1]:时间与额 ...

  3. [程序员代码面试指南]递归和动态规划-换钱的最少货币数(DP,完全背包)

    题目描述 给定arr,arr中所有的值都为正数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim,求组成aim的最少货币数. 解题思路 dp[i][j]表示只用第0 ...

  4. [DP]换钱的最小货币数

    题目一 给定数组arr,数组中有N个元素,其中所有的之都为整数且不重复.每个只代表一种面值的货币,每种面值的货币可以使用任意张,在给定一个整数aim代表要找的钱数,求组成aim的最少货币数. 解法 依 ...

  5. 机器学习算法与Python实践之(四)支持向量机(SVM)实现

    机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...

  6. 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)

    http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...

  7. 数据结构与算法(Python)

    数据结构与算法(Python) Why? 我们举一个可能不太恰当的例子: 如果将最终写好运行的程序比作战场,我们码农便是指挥作战的将军,而我们所写的代码便是士兵和武器. 那么数据结构和算法是什么?答曰 ...

  8. 八大排序算法的 Python 实现

    转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...

  9. 数据关联分析 association analysis (Aprior算法,python代码)

    1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...

随机推荐

  1. 新闻娱乐类APP的后端核心逻辑总结

    一.主要功能: 用户:登录.注册(微信账号登录.手机号登录).修改.审核 内容:发布.审核.分享.点赞.收藏及置顶热推等相关操作 评论:发布.审核.点赞及热评等相关操作 消息推送:站内信如用户修改结果 ...

  2. 盘点海口最好吃的西餐厅top10

    Top 1:主厨的餐桌 餐厅地址:龙华区海秀路九号民航宾馆一楼大堂 主厨的餐桌Chef's Table是三位志同道合的大厨一起携手开办的西餐厅,正宗的西式料理.浓郁的浪漫气息,都是Chef's Tab ...

  3. Unity 3D中不得不说的yield协程与消息传递

    1. 协程 在Unity 3D中,我们刚开始写脚本的时候肯定会遇到类似下面这样的需求:每隔3秒发射一个烟花.怪物死亡后20秒再复活之类的.刚开始的时候喜欢把这些东西都塞到Update里面去,就像下面这 ...

  4. 【java】package

    总结: 包与包之间进行访问,被访问的包中的类以及类中的成员,需要public修饰. 不同包中的子类还可以直接访问父类中被protected权限修饰的成员. 包与包之间可以使用的权限只有两种,publi ...

  5. 环境搭建--使用pytharm远程调试树莓派

    对于Linux和文本编辑器不那么熟悉的小伙伴来说,直接在树莓派中写程序可谓是痛苦万分.本文将介绍如何使用PyCharm远程调试树莓派,并同步当前python文件到树莓派中. 配置环境 首先要在个人电脑 ...

  6. Python判断、运算符

    1.Python之if判断 2.Python运算符 3.Python综合案例

  7. ajax(读取json数据)

    ajax知识点: 语法:$.ajax(路由,请求方式,返回的数据类型,数据参数,回调函数) url: "路由", type:"",默认get请求(get或pos ...

  8. OkGo3.0 --真实项目使用和二次封装(转)

    转载:https://blog.csdn.net/jiushiwo12340/article/details/79011480  11.OkGo3.0真实项目使用和二次封装: ====  11.OkG ...

  9. Qt之菜单栏工具栏入门

    菜单栏基本操作 创建菜单栏 QMenuBar *menuBar = new QMenuBar(this); //1.创建菜单栏 menuBar->setGeometry(,,width(),); ...

  10. 2018/12/20 20:52:42 螺纹钢PTA豆粕

    如期向上,但是一点办法没有:没有好的入场位,不做不算错,面对诱惑不动如山也是一种修养,今晚看M5有没有3买,有的话可以看情况考虑要不要进场 PTA M30向下一笔过程中,等待M30当前一笔下跌结束,可 ...