词形还原(Lemmatization)是文本预处理中的重要部分,与词干提取(stemming)很相似。

  简单说来,词形还原就是去掉单词的词缀,提取单词的主干部分,通常提取后的单词会是字典中的单词,不同于词干提取(stemming),提取后的单词不一定会出现在单词中。比如,单词“cars”词形还原后的单词为“car”,单词“ate”词形还原后的单词为“eat”。

  在Python的nltk模块中,使用WordNet为我们提供了稳健的词形还原的函数。如以下示例Python代码:

from nltk.stem import WordNetLemmatizer

wnl = WordNetLemmatizer()
# lemmatize nouns
print(wnl.lemmatize('cars', 'n'))
print(wnl.lemmatize('men', 'n')) # lemmatize verbs
print(wnl.lemmatize('running', 'v'))
print(wnl.lemmatize('ate', 'v')) # lemmatize adjectives
print(wnl.lemmatize('saddest', 'a'))
print(wnl.lemmatize('fancier', 'a'))

输出结果如下:

car

men

run

eat

sad

fancy

在以上代码中,wnl.lemmatize()函数可以进行词形还原,第一个参数为单词,第二个参数为该单词的词性,如名词,动词,形容词等,返回的结果为输入单词的词形还原后的结果。

  词形还原一般是简单的,但具体我们在使用时,指定单词的词性很重要,不然词形还原可能效果不好,如以下代码:

from nltk.stem import WordNetLemmatizer

wnl = WordNetLemmatizer()
print(wnl.lemmatize('ate', 'n'))
print(wnl.lemmatize('fancier', 'v'))

输出结果如下:

ate

fancier

  那么,如何获取单词的词性呢?在NLP中,使用Parts of speech(POS)技术实现。在nltk中,可以使用nltk.pos_tag()获取单词在句子中的词性,如以下Python代码:

sentence = 'The brown fox is quick and he is jumping over the lazy dog'
import nltk
tokens = nltk.word_tokenize(sentence)
tagged_sent = nltk.pos_tag(tokens)
print(tagged_sent)

输出结果如下:

[('The', 'DT'), ('brown', 'JJ'), ('fox', 'NN'), ('is', 'VBZ'), ('quick', 'JJ'), ('and', 'CC'), ('he', 'PRP'), ('is', 'VBZ'), ('jumping', 'VBG'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'), ('dog', 'NN')]

  关于上述词性的说明,可以参考下表:

  OK,知道了获取单词在句子中的词性,再结合词形还原,就能很好地完成词形还原功能。示例的Python代码如下:

from nltk import word_tokenize, pos_tag
from nltk.corpus import wordnet
from nltk.stem import WordNetLemmatizer # 获取单词的词性
def get_wordnet_pos(tag):
if tag.startswith('J'):
return wordnet.ADJ
elif tag.startswith('V'):
return wordnet.VERB
elif tag.startswith('N'):
return wordnet.NOUN
elif tag.startswith('R'):
return wordnet.ADV
else:
return None sentence = 'football is a family of team sports that involve, to varying degrees, kicking a ball to score a goal.'
tokens = word_tokenize(sentence) # 分词
tagged_sent = pos_tag(tokens) # 获取单词词性 wnl = WordNetLemmatizer()
lemmas_sent = []
for tag in tagged_sent:
wordnet_pos = get_wordnet_pos(tag[1]) or wordnet.NOUN
lemmas_sent.append(wnl.lemmatize(tag[0], pos=wordnet_pos)) # 词形还原 print(lemmas_sent)

输出结果如下:

['football', 'be', 'a', 'family', 'of', 'team', 'sport', 'that', 'involve', ',', 'to', 'vary', 'degree', ',', 'kick', 'a', 'ball', 'to', 'score', 'a', 'goal', '.']

输出的结果就是对句子中的单词进行词形还原后的结果。

  本次分享到此结束,欢迎大家交流~

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~

NLP入门(三)词形还原(Lemmatization)的更多相关文章

  1. token:NLP之词形还原

    已迁移到我新博客,阅读体验更佳token:NLP之词形还原 完整代码实现放在我的github上:click me 一.任务描述 形态还原算法: 输入一个单词 如果词典里有该词,输出该词及其属性,转4, ...

  2. NLP入门(五)用深度学习实现命名实体识别(NER)

    前言   在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...

  3. NLP入门(八)使用CRF++实现命名实体识别(NER)

    CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...

  4. 【原创】NIO框架入门(三):iOS与MINA2、Netty4的跨平台UDP双向通信实战

    前言 本文将演示一个iOS客户端程序,通过UDP协议与两个典型的NIO框架服务端,实现跨平台双向通信的完整Demo.服务端将分别用MINA2和Netty4进行实现,而通信时服务端你只需选其一就行了.同 ...

  5. Swift语法基础入门三(函数, 闭包)

    Swift语法基础入门三(函数, 闭包) 函数: 函数是用来完成特定任务的独立的代码块.你给一个函数起一个合适的名字,用来标识函数做什么,并且当函数需要执行的时候,这个名字会被用于“调用”函数 格式: ...

  6. Thinkphp入门三—框架模板、变量(47)

    原文:Thinkphp入门三-框架模板.变量(47) [在控制器调用模板] display()   调用当前操作名称的模板 display(‘名字’)  调用指定名字的模板文件 控制器调用模板四种方式 ...

  7. DevExpress XtraReports 入门三 创建 Master-Detail(主/从) 报表

    原文:DevExpress XtraReports 入门三 创建 Master-Detail(主/从) 报表 本文只是为了帮助初次接触或是需要DevExpress XtraReports报表的人群使用 ...

  8. 微服务(入门三):netcore ocelot api网关结合consul服务发现

    简介 api网关是提供给外部调用的统一入口,类似于dns,所有的请求统一先到api网关,由api网关进行指定内网链接. ocelot是基于netcore开发的开源API网关项目,功能强大,使用方便,它 ...

  9. 脑残式网络编程入门(三):HTTP协议必知必会的一些知识

    本文原作者:“竹千代”,原文由“玉刚说”写作平台提供写作赞助,原文版权归“玉刚说”微信公众号所有,即时通讯网收录时有改动. 1.前言 无论是即时通讯应用还是传统的信息系统,Http协议都是我们最常打交 ...

随机推荐

  1. p112 the podocyte

    正常人尿液只有一很少的蛋白质.尿蛋白特别是白蛋白的出现,是肾小球疾病的重要特征,也是众多肾脏疾病的关键的诊断标记,包括了统计数据或者说经济效应上都很重要的那些肾病.糖尿病肾病等等.可能没被广泛认识的是 ...

  2. PWM of STM32

    下面是STM32用来产生PWM得文件,分别是PWM.c和PWM.h /***************************************************************** ...

  3. You just run!

    第一篇博客,无关技术,有关身体. 写一篇跑步干货 装备篇 用过的鞋: 光脚,拖鞋,人字拖,回力板鞋,皮鞋,特步,鸿星尔克,李宁超轻13,ASICS  gt2000,阿迪低端. 1,非常推荐攒钱买一双a ...

  4. ssh 使用 sed 替换的时候,替换的字符串有单双引号的时候怎么用

    线上有一个脚本需要 ssh 登录远程机,然后完成特定文件中的某个值,替换的字符中有单引号,所以需要特定的写法,才能成功 1).ssh 远程执行命令,替换字符串中有单引号( ' ) ssh zhuzi@ ...

  5. nohup和&后台运行,进程查看及终止

    1.nohup 用途:不挂断地运行命令. 语法:nohup Command [ Arg … ] [ & ] 无论是否将 nohup 命令的输出重定向到终端,输出都将附加到当前目录的 nohup ...

  6. Java的简单类型不能够精确的对浮点数进行运算

    由于Java的简单类型不能够精确的对浮点数进行运算,这个工具类提供精确的浮点数运算,包括加减乘除和四舍五入. import java.math.BigDecimal; /** * 由于Java的简单类 ...

  7. flask上下文详解

    一.前言 了解过flask的python开发者想必都知道flask中核心机制莫过于上下文管理,当然学习flask如果不了解其中的处理流程,可能在很多问题上不能得到解决,当然我在写本篇文章之前也看到了很 ...

  8. python爬虫学习之查询IP地址对应的归属地

    话不多说,直接上代码吧. import requests def getIpAddr(url): response = requests.get(url) response.encoding=resp ...

  9. Spark机器学习解析下集

    上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l   构造条件概率:回归分 ...

  10. 超实用的Docker入门教程|Docker vs VM

    概述 如今Docker的使用已经非常普遍,特别在一线互联网公司.使用Docker技术可以帮助企业快速水平扩展服务,从而到达弹性部署业务的能力.在云服务概念兴起之后,Docker的使用场景和范围进一步发 ...