转自:byvoid:有向图强连通分量的Tarjan算法

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈回溯时可以判断栈顶到栈中的所有节点是否为一个强连通分量。

有两个概念:1.时间戳,2.追溯值

时间戳是dfs遍历节点的次序。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的栈中节点最小的次序号。由定义可以得出:

 Low(u)=min{
DFN(u), // 自己的次序号
Low(v), //(u,v)为树枝边,u为v的父节点
DFN(v), //(u,v)为指向栈中节点的后向边(非横叉边)
}

即以下节点的最小值:

1. 自己、子树节点的次序号

2. 指向栈中节点(后向边节点)的次序号[等价于 DFN(v)<DFN(u)且v不为u的父亲节点],这里不是横叉边(指向不在栈中的节点)。

DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

伪码:

 tarjan(u)
{
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条邻边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])     
else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat
v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}

运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)

一个顶点u是割点,当且仅当满足(1)或(2)

(1) u为树根,且u有多于一个子树。

(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,即u为v在搜索树中的父亲),使得DFN(u)<=Low(v)。即:若某点的子树们能回到的点大于等于自己,则该点为割点

一条无向边(u,v)是,当且仅当(u,v)为树枝边,且满足DFN(u)<Low(v)。

Tarjan算法【强连通分量】的更多相关文章

  1. tarjan算法强连通分量的正确性解释+错误更新方法的解释!!!+hdu1269

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1269 以下内容为原创,转载请声明. 强连通分量SCC(Strongly Connected Compo ...

  2. Tarjan算法--强连通分量

    tarjan的过程就是dfs过程. 图一般能画成树,树的边有三种类型,树枝边 + 横叉边(两点没有父子关系) + 后向边(两点之间有父子关系): 可以看到只有后向边能构成环,即只有第三张图是强连通分量 ...

  3. 【学习整理】Tarjan:强连通分量+割点+割边

    Tarjan求强连通分量 在一个有向图中,如果某两点间都有互相到达的路径,那么称中两个点强联通,如果任意两点都强联通,那么称这个图为强联通图:一个有向图的极大强联通子图称为强联通分量.   算法可以在 ...

  4. Tarjan求强连通分量,缩点,割点

    Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...

  5. CCF 高速公路 tarjan求强连通分量

    问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...

  6. Tarjan求强连通分量、求桥和割点模板

    Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...

  7. UESTC 901 方老师抢银行 --Tarjan求强连通分量

    思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...

  8. tarjan求强连通分量+缩点+割点以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  9. tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  10. HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题

    Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. $Django 模板层(模板导入,继承)、 单表*详(增删改查,基于双下划线的查询)、static之静态文件配置

    0在python脚本中使用django环境 import osif __name__ == '__main__':    os.environ.setdefault("DJANGO_SETT ...

  2. 缓存系列之二:CDN与其他层面缓存

    缓存系列之二:CDN与其他层面缓存 一:内容分发网络(Content Delivery Network),通过将服务内容分发至全网加速节点,利用全球调度系统使用户能够就近获取,有效降低访问延迟,提升服 ...

  3. Mysql 通过frm&ibd 恢复数据

    mysql存储在磁盘中,各种天灾人祸都会导致数据丢失.大公司的时候我们常常需要做好数据冷热备,对于小公司来说要做好所有数据备份需要支出大量的成本,很多公司也是不现实的.万一还没有做好备份,数据被误删除 ...

  4. Ex3_7无向图二部图_十一次作业

    (a) 从图中的某个顶点做深度优先遍历,并将不同层的顶点标记为红黑两种颜色,使得每条树边的两个顶点的颜色都不相同,如果遇到一条回边并且两个顶点的颜色都相同则说明图不是二部图. (b)如果存在一个长度为 ...

  5. 洛谷P4546 [THUWC2017]在美妙的数学王国中畅游 [LCT,泰勒展开]

    传送门 毒瘤出题人卡精度-- 思路 看到森林里加边删边,容易想到LCT. 然而LCT上似乎很难实现往一条链里代一个数进去求和,怎么办呢? 善良的出题人在下方给了提示:把奇怪的函数泰勒展开搞成多项式,就 ...

  6. L1和L2正则

    https://blog.csdn.net/jinping_shi/article/details/52433975

  7. Oracle 所有字典

    select * from DBA_CONS_COLUMNS ; ---Information about accessible columns in constraint definitions s ...

  8. Confluence 6 XML 备份恢复失败的问题解决

    XML 站点备份仅仅针对新数据库恢复的时候是必要的. Upgrading Confluence,Setting up a test server 或者 Production Backup Strate ...

  9. 【数据库】MySQL的左连接、右连接和全连接的实现

    表student:+----+-----------+------+| id | name | age |+----+-----------+------+| 1 | Jim | 18 || 2 | ...

  10. vue.js----之router详解(一)

    在vue1.0版本的超链接标签还是原来的a标签,链接地址由v-link属性控制 而vue2.0版本里超链接标签由a标签被替换成了router-link标签,但最终在页面还是会被渲染成a标签的 至于为什 ...