Theorem (One point compactification) Any locally compact space \(X\) can be embedded in another compact space \(Y\), which just has one more point than \(X\), such that the relative topology of \(X\) with respect to \(Y\) is the same as the original topology of \(X\). The space \(Y\) thus constructed is called one point compactification of \(X\).

Proof The key step of the proof is to construct the topology of \(Y\) by adopting the open sets from \(X\) whose complements are compact in \(X\).

Construction of the topology \(\mathcal{T}_Y\) for \(Y\)

Let \(\{U_i\}_{i \in I}\) be a collection of open sets in \(X\) such that \(X - U_i\) is compact in \(X\) for all \(i \in I\). Figuratively speaking, these open sets are the spaces \(X\) punctured with holes having bounded dimension. We also note that because the space \(X\) is locally compact, hence for all \(x \in X\), there is a compact neighborhood containing \(x\). This ensures the above selected collection of open sets is not empty.

Let \(Y\) be the space by appending one point \(y_0\) to \(X\). Hence, \(Y = X \cup \{y_0\}\). Let \(\mathcal{T}_Y\) be the topology of \(Y\) which is defined via the following two rules.

For all \(V \in \mathcal{T}_Y\),

  1. if \(V\) does not contain \(y_0\), \(V\) is an open set of \(X\) in \(X\)'s original topology \(\mathcal{T}_X\).
  2. if \(V\) contains \(y_0\), then \(V \cap X \in \{U_i\}_{i \in I}\), where \(X - U_i\) is compact in \(X\).

Prove \(\mathcal{T}_Y\) is a topology of \(Y\)

We'll then prove that such constructed \(\mathcal{T}_Y\) really defines a topology for \(Y\).

  • The empty set \(\Phi\) does not contain \(y_0\) and it belongs to \(\mathcal{T}_X\), so \(\Phi \in \mathcal{T}_Y\) according to rule 1.
  • The whole space \(Y\) contains the point \(y_0\) and \(Y \cap X = X\). Because \(X^{c} = \Phi\), which is compact in \(X\) as a trivial case, \(Y\) belongs to \(\mathcal{T}_Y\).
  • We should check that: a) the union of any number of sets in \(\mathcal{T}_Y\) belongs to \(\mathcal{T}_Y\); b) the intersection of any finite number of sets in \(\mathcal{T}_Y\) belongs to \(\mathcal{T}_Y\).

    • If the selected sets from \(\mathcal{T}_Y\) all satisfy rule 1, i.e., they are selected from \(X\)'s original topology \(\mathcal{T}_X\), it is obvious that the union and finite intersection of these sets are still open in \(X\). Because they do not contain \(y_0\), they satisfy rule 1.
    • If the selected sets from \(\mathcal{T}_Y\) all satisfy rule 2, they all contain point \(y_0\). Let such selected collection of sets be \(\{V_j\}_{j \in J}\). Let \(\{U_j\}_{j \in J}\) be the associated open sets such that \(U_j = V_j \cap X\) for all \(j \in J\). Then we have

      \[
      \left( \left( \bigcup_{j \in J} V_j \right) \cap X \right) ^c = \left( \bigcup_{i \in J} U_j \right)^c = \bigcap_{j \in J} U_j^c.
      \]

      Because all \(U_j^c\) are compact and hence closed in \(X\), their intersection is also closed. Because a closed subset of a compact set is still compact, the intersection of all \(U_j^c\) is compact. Thus, rule 2 is satisfied.

      Similarly, the intersection of a finite number of sets selected from \(\mathcal{T}_Y\) satisfying rule 2 can be proved to belong to \(\mathcal{T}_Y\).

    • If there are two subgroups in the selected sets from \(\mathcal{T}_Y\), such that the sets in one subgroup satisfy rule 1 and those in the other subgroup satisfy rule 2, the union or intersection of all the selected sets can also be divided into two groups corresponding to the two rules. Then we only need to verify:

      \(\forall V_1, V_2 \in \mathcal{T}_Y\), where \(V_1\) satisfies rule 1 and \(V_2\) satisfies rule 2, then both \(V_1 \cup V_2\) and \(V_1 \cap V_2\) are in \(\mathcal{T}_Y\).

      For the union of \(V_1\) and \(V_2\), it contains \(y_0\). Then we check if the complement of \((V_1 \cup V_2) \cap X\) is compact in \(X\).

      \[
      \left( V_1 \cup V_2 \right) \cap X = (V_1 \cap X) \cup (V_2 \cap X) = V_1 \cup U_2.
      \]

      Then

      \[
      (V_1 \cup U_2)^c = V_1^c \cap U_2^c,
      \]

      which is a closed subset of the compact set \(U_2^c\). Therefore, the complement of \((V_1 \cup V_2) \cap X\) is compact.

      For the intersection of \(V_1\) and \(V_2\), it does not contain \(y_0\). We have

      \[
      V_1 \cap V_2 = V_1 \cap U_2.
      \]

      Because both \(V_1\) and \(U_2\) are open sets in \(X\), their intersection is an open set in X, so is \(V_1 \cap V_2\).

Summarizing the above, we've proved \(\mathcal{T}_Y\) is really a topology for \(Y\). It is also obvious to see from the above proof that the relative topology of \(X\) with respect to \(Y\) is the same as its original topology.

Prove \(Y\) is compact

Let \(\{V_i\}_{i \in I}\) be an open covering of \(Y\). Then \(\{ V_i \cap X \}_{i \in I}\) is an open covering of \(X\). Meanwhile, there exists an index \(i_0 \in I\) such that \(y_0 \in V_{i_0}\). Let \(U_{i_0} = V_{i_0} \cap X\), so \(U_{i_0}^c\) is compact in \(X\). Because \(\{ V_i \cap X \}_{i \in I}\) covers \(U_{i_0}^c\), there exists a finite subcovering

\[
U_{i_0}^c \subset \bigcup_{k=1}^n \{ V_{i_k} \cap X \}.
\]

Because \(V_{i_0}\) contains both \(y_0\) and \(U_{i_0}\), the collection \(\{ V_{i_k}\}_{k=1}^n\) appended with \(V_{i_0}\) forms an finite subcovering of \(Y\). Hence \(Y\) is compact.

Examples of one point compactification

  1. The real line \(\mathbb{R}\) is not compact. By adding an infinity point \(\infty\), the real line can be transformed to a circle with \(\infty\) as the paste point.
  2. The plane \(\mathbb{R}^2\) is not compact. By adding an infinity point \(\infty\), the plane can be transformed to a sphere with \(\infty\) as the paste point.

One point compactification的更多相关文章

  1. 普林斯顿数学指南(第一卷) (Timothy Gowers 著)

    第I部分 引论 I.1 数学是做什么的 I.2 数学的语言和语法 I.3 一些基本的数学定义 I.4 数学研究的一般目的 第II部分 现代数学的起源 II.1 从数到数系 II.2 几何学 II.3 ...

  2. Discrete cosine transform(离散余弦转换)

    A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of co ...

随机推荐

  1. 使用C++编写linux多线程程序

    前言 在这个多核时代,如何充分利用每个 CPU 内核是一个绕不开的话题,从需要为成千上万的用户同时提供服务的服务端应用程序,到需要同时打开十几个页面,每个页面都有几十上百个链接的 web 浏览器应用程 ...

  2. SharePoint 2013 报错 异常来自 HRESULT:0X80131904

    直接上传文件,报错:该Url xxxx无效.它可能指向不存在的文件或文件夹,或者是执行不再当前网站中的有效文件或文件夹. 直接新建文件夹,报错:异常来自 HRESULT:0X80131904 以系统账 ...

  3. applet jre冲突问题

    erp中用到applet,jre为1.6,开发用到jdk1.8,有冲突 安装jre1.6,再安装jdk8,将jdk1.8文件夹复制后卸载1.8,然后重新黏贴,将javahome定向到1.8文件夹

  4. css3 弹性效果上下翻转demo

    最近扒了一个有弹性效果上下翻转demo 上图: 上代码: <!DOCTYPE html> <html lang="en"> <head> < ...

  5. 弹出框sweetalert插件的简单使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. java后台发送请求并获取返回值(续)

    在java后端发送请求给另一个平台,从而给前端实现 "透传"的过程中,出现:数据请求到了并传到了前端,但是控制台打印时中文显示Unicode码而前端界面中中文显示不出来!!!开始怀 ...

  7. C# 后台请求api

    /// <summary> /// 指定Post地址使用Get 方式获取全部字符串 /// </summary> /// <param name="url&qu ...

  8. 6)django-示例(fbv)

    FBV(function base view),即一个url对应views.py一个函数 示例演示如下 1)FBV如何使用 2)渲染页面,并返回字典数据 3)字典数据页面如何访问 1)url.py f ...

  9. Android性能优化之图片压缩优化

    1 分类Android图片压缩结合多种压缩方式,常用的有尺寸压缩.质量压缩.采样率压缩以及通过JNI调用libjpeg库来进行压缩. 参考此方法:Android-BitherCompress 备注:对 ...

  10. Codeforces 938G Shortest Path Queries [分治,线性基,并查集]

    洛谷 Codeforces 分治的题目,或者说分治的思想,是非常灵活多变的. 所以对我这种智商低的选手特别不友好 脑子不好使怎么办?多做题吧-- 前置知识 线性基是你必须会的,不然这题不可做. 推荐再 ...