多态的实现原理分析

当类里有一个函数被声明成虚函数后,创建这个类的对象的时候,就会自动加入一个__vfptr的指针,

__vfptr维护虚函数列表。如果有三个虚函数,则__vfptr指向的是第一个虚函数,

__vfptr+1指向的是第二个虚函数,__vfptr+2指向的是第三个虚函数。

当子类覆盖了父类的虚函数后,__vfptr+n就不是指向父类的虚函数了,而是指向的子类的函数。

所以当我们用父类的指针或者引用去调用被覆盖的虚函数时,才能够调用到子类的函数。

1.成员函数加上virtual修饰后,sizeof(类)的数字变大,即使有多个成员函数声明成虚函数,sizeof(类)的数字不会再变大。

加了virtual后,用GDB调试的时候,发现对象b下多了个_vptr

#include <iostream>
using namespace std; class Base{
public:
Base() : x(0){ }
~Base(){ }
virtual void show(){
cout << "Base show" << endl;
}
private:
int x;
}; int main(){
cout << sizeof(Base) << endl;//16
Base b;
}

没加virtual的效果:

#include <iostream>
using namespace std; class Base{
public:
Base() : x(0){ }
~Base(){ }
void show(){
cout << "Base show" << endl;
}
private:
int x;
}; int main(){
cout << sizeof(Base) << endl;//4
Base b;
}

2.声明了虚拟函数后,系统会自动维护一个指针_vptr,指向虚函数列表。

多态是通过虚函数列表实现的。

#include <iostream>
using namespace std; class Base{
public:
Base() : x(0){ }
~Base(){ }
virtual void show(){
cout << "Base show" << endl;
}
virtual void print(){
cout << "Base print" << endl;
}
void fun(){
cout << "Base fun" << endl;
} private:
int x;
}; class D : public Base{
public:
D() : y(0){ }
~D(){ }
void show(){
cout << "D show" << endl;
}
void fun(){
cout << "D fun" << endl;
}
virtual void list(){
cout << "D list" << endl;
}
private:
int y;
};
int main(){
D d;
d.fun();//调用子类的fun方法,父类的fun方法被隐藏了 Base *pb = &d;
pb->show();//调用子类的show方法,多态(覆盖)
pb->fun();//调用父类的fun方法 Base &fb = d;
fb.show();//用子类的show方法,多态(覆盖)
fb.fun();//调用父类的fun方法
}

3.虚函数表

3.1 单继承,无覆盖
#include <iostream>
using namespace std; class Base{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
}; class D : public Base{
virtual void f1(){}
virtual void g1(){}
virtual void h1(){}
}; int main(){
D d;
}

用GDB查看函数指针的方法:x/a 内存地址。查看下一个函数指针:x/a 内存地址+8

gdb的分析结果:

18	  D d;
(gdb) n
(gdb) p d
$2 = {<Base> = {_vptr.Base = 0x555555755d48 <vtable for D+16>}, <No data fields>}
(gdb) x/a 0x555555755d48
$3 = (long *) 0x555555554a06 <Base::f()>//虚函数表第1个地址
(gdb) x/a 0x555555755d48+8
$4 = (long *) 0x555555554a12 <Base::g()>//虚函数表第2个地址
(gdb) x/a 0x555555755d48+16
$5 = (long *) 0x555555554a1e <Base::h()>//虚函数表第3个地址
(gdb) x/a 0x555555755d48+24
$6 = (long *) 0x555555554a2a <D::f1()>//虚函数表第4个地址
(gdb) x/a 0x555555755d48+32
$7 = (long *) 0x555555554a36 <D::g1()>//虚函数表第5个地址
(gdb) x/a 0x555555755d48+40
$8 = (long *) 0x555555554a42 <D::h1()>//虚函数表第6个地址
(gdb) x/a 0x555555755d48+48
$9 = (long *) 0x7ffff7dc7438 <vtable for __cxxabiv1::__si_class_type_info+16>
3.2 单继承,覆盖
#include <iostream>
using namespace std; class Base{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
}; class D : public Base{
virtual void f(){}
virtual void g1(){}
virtual void h1(){}
}; int main(){
D d;
}

gdb的分析结果:

18	  D d;
(gdb) n
(gdb) p d
$1 = {<Base> = {_vptr.Base = 0x555555755d50 <vtable for D+16>}, <No data fields>}
(gdb) p (long*)*((long*)0x555555755d50)
$2 = (long *) 0x555555554a0e <D::f()>//虚函数表第1个地址(变成了子类的f())
(gdb) p (long*)*((long*)0x555555755d50+1)
$3 = (long *) 0x5555555549f6 <Base::g()>//虚函数表第2个地址
(gdb) p (long*)*((long*)0x555555755d50+2)
$4 = (long *) 0x555555554a02 <Base::h()>//虚函数表第3个地址
(gdb) p (long*)*((long*)0x555555755d50+3)
$5 = (long *) 0x555555554a1a <D::g1()>//虚函数表第4个地址
(gdb) p (long*)*((long*)0x555555755d50+4)
$6 = (long *) 0x555555554a26 <D::h1()>//虚函数表第5个地址
(gdb) p (long*)*((long*)0x555555755d50+5)
$7 = (long *) 0x7ffff7dc7438 <vtable for __cxxabiv1::__si_class_type_info+16>
3.3 多继承,不覆盖
#include <iostream>
using namespace std; class Base{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
};
class Base1{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
};
class Base2{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
};
class D : public Base,public Base1,public Base2{
virtual void f1(){}
virtual void g1(){}
virtual void h1(){}
};
int main(){
D d;
}

gdb的分析结果:

29	  D d;
(gdb) n
(gdb) p d
$1 = {<Base> = {_vptr.Base = 0x555555755ca8 <vtable for D+16>}, <Base1> = {
_vptr.Base1 = 0x555555755ce8 <vtable for D+80>}, <Base2> = {
_vptr.Base2 = 0x555555755d10 <vtable for D+120>}, <No data fields>}
(gdb) p (long*)*((long*)0x555555755ca8)
$3 = (long *) 0x555555554b6c <Base::f()>//虚函数表(Base)第1个地址
(gdb) p (long*)*((long*)0x555555755ca8+1)
$4 = (long *) 0x555555554b78 <Base::g()>//虚函数表(Base)第2个地址
(gdb) p (long*)*((long*)0x555555755ca8+2)
$5 = (long *) 0x555555554b84 <Base::h()>//虚函数表(Base)第3个地址
(gdb) p (long*)*((long*)0x555555755ca8+3)
$6 = (long *) 0x555555554bd8 <D::f1()>//虚函数表(Base)第4个地址
(gdb) p (long*)*((long*)0x555555755ca8+4)
$7 = (long *) 0x555555554be4 <D::g1()>//虚函数表(Base)第5个地址
(gdb) p (long*)*((long*)0x555555755ca8+5)
$8 = (long *) 0x555555554bf0 <D::h1()>//虚函数表(Base)第6个地址
(gdb) p (long*)*((long*)0x555555755ca8+6)
$9 = (long *) 0xfffffffffffffff8
(gdb) p (long*)*((long*)0x555555755ce8)
$10 = (long *) 0x555555554b90 <Base1::f()>//虚函数表(Base1)第1个地址
(gdb) p (long*)*((long*)0x555555755ce8+1)
$11 = (long *) 0x555555554b9c <Base1::g()>//虚函数表(Base1)第2个地址
(gdb) p (long*)*((long*)0x555555755ce8+2)
$12 = (long *) 0x555555554ba8 <Base1::h()>//虚函数表(Base1)第3个地址
(gdb) p (long*)*((long*)0x555555755ce8+3)
$13 = (long *) 0xfffffffffffffff0
(gdb) p (long*)*((long*)0x555555755d10)
$14 = (long *) 0x555555554bb4 <Base2::f()>//虚函数表(Base2)第1个地址
(gdb) p (long*)*((long*)0x555555755d10+1)
$15 = (long *) 0x555555554bc0 <Base2::g()>//虚函数表(Base2)第2个地址
(gdb) p (long*)*((long*)0x555555755d10+2)
$16 = (long *) 0x555555554bcc <Base2::h()>//虚函数表(Base2)第3个地址
(gdb) p (long*)*((long*)0x555555755d10+3)
$17 = (long *) 0x7ffff7dc74f8 <vtable for __cxxabiv1::__vmi_class_type_info+16>
3.4 多继承,覆盖
#include <iostream>
using namespace std; class Base{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
};
class Base1{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
};
class Base2{
public:
virtual void f(){}
virtual void g(){}
virtual void h(){}
};
class D : public Base,public Base1,public Base2{
virtual void f(){}
virtual void g1(){}
virtual void h1(){}
};
int main(){
D d;
}

gdb的分析结果:

29	  D d;
(gdb) n
(gdb) p d
$1 = {<Base> = {_vptr.Base = 0x555555755cb0 <vtable for D+16>}, <Base1> = {
_vptr.Base1 = 0x555555755ce8 <vtable for D+72>}, <Base2> = {
_vptr.Base2 = 0x555555755d10 <vtable for D+112>}, <No data fields>}
(gdb) p (long*)*((long*)0x555555755cb0)
$2 = (long *) 0x555555554ba4 <D::f()>//虚函数表(Base)第1个地址(变成了子类的f())
(gdb) p (long*)*((long*)0x555555755cb0+1)
$3 = (long *) 0x555555554b5c <Base::g()>//虚函数表(Base)第2个地址
(gdb) p (long*)*((long*)0x555555755cb0+2)
$4 = (long *) 0x555555554b68 <Base::h()>//虚函数表(Base)第3个地址
(gdb) p (long*)*((long*)0x555555755cb0+3)
$5 = (long *) 0x555555554bbc <D::g1()>//虚函数表(Base)第4个地址
(gdb) p (long*)*((long*)0x555555755cb0+4)
$6 = (long *) 0x555555554bc8 <D::h1()>//虚函数表(Base)第5个地址
(gdb) p (long*)*((long*)0x555555755cb0+5)
$7 = (long *) 0xfffffffffffffff8
(gdb) p (long*)*((long*)0x555555755ce8)
$8 = (long *) 0x555555554bb5 <non-virtual thunk to D::f()>//虚函数表(Base1)第1个地址(变成了子类的f())
(gdb) p (long*)*((long*)0x555555755ce8+1)
$9 = (long *) 0x555555554b74 <Base1::g()>//虚函数表(Base1)第2个地址
(gdb) p (long*)*((long*)0x555555755ce8+2)
$10 = (long *) 0x555555554b80 <Base1::h()>//虚函数表(Base1)第3个地址
(gdb) p (long*)*((long*)0x555555755ce8+3)
$11 = (long *) 0xfffffffffffffff0
(gdb) p (long*)*((long*)0x555555755d10)
$12 = (long *) 0x555555554baf <non-virtual thunk to D::f()>//虚函数表(Base2)第1个地址(变成了子类的f())
(gdb) p (long*)*((long*)0x555555755d10+1)
$13 = (long *) 0x555555554b8c <Base2::g()>//虚函数表(Base2)第2个地址
(gdb) p (long*)*((long*)0x555555755d10+2)
$14 = (long *) 0x555555554b98 <Base2::h()>//虚函数表(Base2)第3个地址
(gdb) p (long*)*((long*)0x555555755d10+3)
$15 = (long *) 0x7ffff7dc74f8 <vtable for __cxxabiv1::__vmi_class_type_info+16>

c/c++ 多态的实现原理分析的更多相关文章

  1. 从虚拟机指令执行的角度分析JAVA中多态的实现原理

    从虚拟机指令执行的角度分析JAVA中多态的实现原理 前几天突然被一个"家伙"问了几个问题,其中一个是:JAVA中的多态的实现原理是什么? 我一想,这肯定不是从语法的角度来阐释多态吧 ...

  2. 【C#多态】as 类型检测(原理分析) ---用于多态检

    as(OpCodes.Castclass)功能:测试对象引用(O 类型)是否为特定类的实例.相当于:expression is type ? (type)expression : (type)null ...

  3. C++学习笔记-多态的实现原理

    深入了解多态的实现原理,有助于提高对于多态的认识 多态基础 多态的实现效果 多态:同样的调用语句有多种不同的表现形态 多态实现的三个条件 有继承.有virtual重写.有父类指针(引用)指向子类对象 ...

  4. AIDL原理分析

    季春初始,天气返暖,新冠渐去,正值学习好时机.在Android系统中,AIDL一直在Framework和应用层上扮演着很重要的角色,今日且将其原理简单分析.(文2020.03.30) 一.开篇介绍 1 ...

  5. Handler系列之原理分析

    上一节我们讲解了Handler的基本使用方法,也是平时大家用到的最多的使用方式.那么本节让我们来学习一下Handler的工作原理吧!!! 我们知道Android中我们只能在ui线程(主线程)更新ui信 ...

  6. Java NIO使用及原理分析(1-4)(转)

    转载的原文章也找不到!从以下博客中找到http://blog.csdn.net/wuxianglong/article/details/6604817 转载自:李会军•宁静致远 最近由于工作关系要做一 ...

  7. 原子类java.util.concurrent.atomic.*原理分析

    原子类java.util.concurrent.atomic.*原理分析 在并发编程下,原子操作类的应用可以说是无处不在的.为解决线程安全的读写提供了很大的便利. 原子类保证原子的两个关键的点就是:可 ...

  8. c++编译器对多态的实现原理总结

    问题:定义一个空的类型,里面没有任何的成员变量或者成员函数,对这个类型进行 sizeof 运算,结果是? 结果是1,因为空类型的实例不包含任何信息,按道理 sizeof 计算之后结果是0,但是在声明任 ...

  9. Android中Input型输入设备驱动原理分析(一)

    转自:http://blog.csdn.net/eilianlau/article/details/6969361 话说Android中Event输入设备驱动原理分析还不如说Linux输入子系统呢,反 ...

随机推荐

  1. 【MySQL经典案例分析】关于数据行溢出由浅至深的探讨

    本文由云+社区发表 一.从常见的报错说起 ​ 故事的开头我们先来看一个常见的sql报错信息: ​ 相信对于这类报错大家一定遇到过很多次了,特别对于OMG这种已内容生产为主要工作核心的BG,在内容线的存 ...

  2. [深度学习] 权重初始化--Weight Initialization

    深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种 ...

  3. [转]Javascript中几种较为流行的继承方式

    出处:http://www.jianshu.com/p/a6c005228a75 开篇 从'严格'意义上说,javascript并不是一门真正的面向对象语言.这种说法原因一般都是觉得javascrip ...

  4. ORA-00257 archiver error的处理

    ORA-00257 archiver error的处理 检查flash recovery area的使用情况 SQL> set linesize 100 SQL> col paramete ...

  5. YTKNetwork网络封装

    本篇是答应在端午写iOS网络-四篇源码解析以及封装的最后一篇,是针对上一篇YTKNetwork源码解析后的一次封装,也是自己实际项目中所使用过的.在对YTKNetwork封装的时候,还是需要对YTKN ...

  6. 结构型---适配器模式(Adapter Pattern)

          适配器模式——把一个类的接口变换成客户端所期待的另一种接口,从而使原本接口不匹配而无法一起工作的两个类能够在一起工作.适配器模式有类的适配器模式和对象的适配器模式两种形式,下面我们分别讨论 ...

  7. element-ui el-input只显示下划线

    只需要增加样式 .el-input__inner { width: 220px; border-top-width: 0px; border-left-width: 0px; border-right ...

  8. Java中的方法重载与方法重写

    重载(overload) 重载是在一个类中,同名方法拥有不同的参数列表则视为重载.不同的参数列表包括:参数数量不同,参数类型不同,参数顺序不同.重载对于返回类型没有要求,所以不能通过返回类型去判断是否 ...

  9. 浅析多线程的对象锁和Class锁

    一.前言 本来想在另外一篇文章说的,发现可能篇幅有点大,所以还是另开一篇博文来说好了.知识参考<Java多线程编程核心技术>,评价下这本书吧——大量的代码,简单的说明,真像在看博客.不过这 ...

  10. CA 工作流程

    散列函数 Hash 常见的有 MD5, SHA1, SHA256, 该类函数特点是函数单向不可逆,对输入非常敏感,输出长度固定,针对数据的任何修改都会改变散列函数的结果,用于防止信息篡改并验证数据的完 ...