题目大意:给定一个长度为 N 的序列,求序列中连续区间最大的(或和加与和)是多少。

题解:

引理:任意两个数 \(i, j\),若 \(i>j\),则在二进制表示下,i 对应的二进制串的字典序一定大于 j 对应的二进制串的字典序。

根据引理,若当前的最优解为 X,现考虑新加入一个元素 Y,有以下三种情况。

  1. 若 \(X>Y\),则 Y 不应加入 X 对答案的贡献中,因为对于或来说新加入 Y 的贡献会比 Y & X 对答案的负贡献小。
  2. 若 \(X=Y\),则无所谓。
  3. 若 \(X<Y\),不妨将 Y 设为当前最优解,结果会变得更优。

    综上,答案为序列中元素最大值的二倍。

二进制的最优解问题是具有贪心性质的,即:一个高位的 1 比所有低位均为 1 还要大。因此,只需每次尽量使得高位为 1 即可取得最优解。

另一种解法是 贪心+二分,枚举左端点,再根据二进制位从高到低进行贪心,用二分加速寻找最优的右端点。时间复杂度为 \(O(nlog^2n)\)。

代码如下

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=1e5+10;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll fpow(ll a,ll b,ll c){ll ret=1%c;for(;b;b>>=1,a=a*a%c)if(b&1)ret=ret*a%c;return ret;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*------------------------------------------------------------*/ ll n,b,p,a[maxn],sum[32][maxn]; void read_and_parse(){
n=read(),b=read(),p=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=0;i<=25;i++)
for(int j=1;j<=n;j++)
sum[i][j]=sum[i][j-1]+(a[j]>>i&1);
}
void solve(){
ll ans=0;
for(int i=1;i<=n;i++){
ll lb=i,rb=n,ret=0;
for(int bit=25;~bit;bit--){
if(a[i]>>bit&1){
ll l=lb-1,r=rb;
while(l<r){
int mid=l+r+1>>1;
if(sum[bit][mid]-sum[bit][i-1]==mid-i+1)l=mid;
else r=mid-1;
}
if(l==lb-1)ret+=(1<<bit);
else ret+=2*(1<<bit),rb=l;
}else{
ll l=lb,r=rb+1;
while(l<r){
int mid=l+r>>1;
if(sum[bit][mid]-sum[bit][i-1]>0)r=mid;
else l=mid+1;
}
if(r==rb+1)continue;
else ret+=(1<<bit),lb=r;
}
}
ans=max(ans,ret);
}
printf("%lld\n",fpow(ans+233,b,p));
}
int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P4144】大河的序列的更多相关文章

  1. 洛谷 2023 [AHOI2009]维护序列

    洛谷 2023 [AHOI2009]维护序列 洛谷原题传送门 这个题也是一道经典的线段树模版(其实洛谷的模版二改一下输入顺序就能AC),其中包括区间乘法修改.区间加法修改.区间查询三个操作. 线段树的 ...

  2. 洛谷P2023 [AHOI2009]维护序列(线段树区间更新,区间查询)

    洛谷P2023 [AHOI2009]维护序列 区间修改 当我们要修改一个区间时,要保证 \(ax+b\) 的形式,即先乘后加的形式.当将区间乘以一个数 \(k\) 时,原来的区间和为 \(ax+b\) ...

  3. 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP

    洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...

  4. [洛谷P2023] [AHOI2009]维护序列

    洛谷题目链接:[AHOI2009]维护序列 题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式: (1)把数列 ...

  5. BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$ ...

  6. 【题解】洛谷P2023 [AHOI2009] 维护序列(线段树)

    洛谷P2023:https://www.luogu.org/problemnew/show/P2023 思路 需要2个Lazy-Tag 一个表示加的 一个表示乘的 需要先计算乘法 再计算加法 来自你谷 ...

  7. 【洛谷3321_BZOJ3992】[SDOI2015]序列统计(原根_多项式)

    题目: 洛谷3321 分析: 一个转化思路比较神(典型?)的题-- 一个比较显然的\(O(n^3)\)暴力是用\(f[i][j]\)表示选了\(i\)个数,当前积在模\(m\)意义下为\(j\)的方案 ...

  8. l洛谷 (水题)P4144 大河的序列

    题目戳 Solution: 这题前面都是废话,关键的一句就是本题求的是序列中连续一段的相与值(&)+相或值(|)最大,然后对这个值进行快速幂取模.考虑到两个数相与最大能得到的就是这两个数中的最 ...

  9. 洛谷P1415 拆分数列[序列DP 状态 打印]

    题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...

随机推荐

  1. 剑指offer(20)二叉搜索树与双向表

    题目: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 思路一:递归法 1.将左子树构造成双链表,并返回链表头节点. 2.定位至左子 ...

  2. Python魔法方法(magic method)细解几个常用魔法方法(下)

    接上文,再介绍最后几个常用的魔法方法. 关于__dict__: 先上个例子: class Test(object): fly = True def __init__(self, age): self. ...

  3. MySQL系列:索引基本操作(4)

    1. 索引简介 索引是一种特殊的数据库结构,可以用来快速查询数据中的特定记录. MySQL中索引包括:普通索引.唯一性索引.全文索引.单列索引.多列索引和空间索引等. 1.1 索引定义 索引由数据库表 ...

  4. python设计模式第二十四天【命令模式】

    1.使用场景 (1)调用过程比较繁琐,需要封装 (2)调用参数需要进行处理封装 (3)需要添加额外的功能,例如,日志,缓存,操作记录等 2.代码实现 #!/usr/bin/env python #! ...

  5. js函数使用prototype和不适用prototype的区别

    js中类定义函数时用prototype与不用的区别 原创 2017年06月05日 12:25:41 标签: 函数 / prototype / class   首先来看一个实例: function Li ...

  6. [离散时间信号处理学习笔记] 10. z变换与LTI系统

    我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displays ...

  7. Elasticsearch 关键字与SQL关键字对比总结

    由于Elasticsearch和MongoDB/Redis/Memcache一样,是非关系型数据库.而平常使用的MySql,Oracle,SQLServer 等为关系型数据库,二者有着本质的区别,Es ...

  8. robotframework测试用例加入注释

    *** Variables ***${HOST} 192.168.132.135${USER} username*** Test Cases ***Simple [Documentation] Sim ...

  9. 【BZOJ2333】【SCOI2011】棘手的操作 treap合并

    题目大意 有\(n\)个节点,标号从1到\(n\),这\(n\)个节点一开始相互不连通.第\(i\)个节点的初始权值为\(a_i\),接下来有如下一些操作: \(U~x~y\):加一条边,连接第\(x ...

  10. @ResponseBody注解

    作用 @ResponseBody注解表示该方法的返回结果直接写入HTTP response body中 原理 在使用此注解之后跳过视图处理器,将返回的对象通过适当的转换器转换为指定的格式之后,直接将数 ...