KFCM算法的matlab程序(用FCM初始化聚类中心)
KFCM算法的matlab程序(用FCM初始化聚类中心)
在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与运行时间。
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/
1.iris数据
iris.data
5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3
2.源程序
Eg_KFCM.m
function [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,K)
%输入K:聚的类,max_iter是最大迭代次数,T:遗传算法最大迭代次数,n:种群个数
%输出ave_acc_KFCM:迭代max_iter次之后的平均准确度,iter:实际KFCM迭代次数
% data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
% data=data_load(:,1:4);
% real_label=data_load(:,5);
t0=cputime;
max_iter=20;
s=0;
accuracy=zeros(max_iter,1);
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
for i=1:max_iter
%随机初始化K个聚类中心
% rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
% para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
[~,para_miu,iter_FCM]=My_FCM2(X,K);
[label_1,iter_KFCM]=My_KFCM(X,K,para_miu);
accuracy(i)=succeed(real_label,K,label_1);
s=s+accuracy(i);
fprintf('第 %2d 次,FCM的迭代次数为:%2d,KFCM的迭代次数为:%2d,准确度为:%.8f\n', i, iter_FCM, iter_KFCM, accuracy(i));
end
ave_acc_KFCM=s/max_iter;
max_acc_FCM=max(accuracy);
min_acc_FCM=min(accuracy);
run_time=cputime-t0;
My_FCM2.m
function [label_1,para_miu_new,iter]=My_FCM2(X,K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
fitness=zeros(T,1);
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化K个聚类中心
rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% FCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if distant(i,j)==1
responsivity(i,j)=0;
elseif distant(i,j)==0
responsivity(i,j)=1./sum(responsivity(i,:)==0);
else
R_up(i,j)=distant(i,j).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=sum(sum(distant.*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(responsivity'.^(alpha))*X; %μ的分子部分
para_miu=miu_up./((sum(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
break;
end
end
end
para_miu_new=para_miu;
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);
My_KFCM.m
function [label_1,iter,fitness_min]=My_KFCM(X,K,para_miu)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
sigma_1=150; %高斯核函数的参数
[X_num,X_dim]=size(X);
fitness=zeros(X_num,1);
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% KFCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%高斯核函数,X_num*K的矩阵
kernel_fun=exp((-distant)./(2*sigma_1*sigma_1));
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if kernel_fun(i,j)==1
responsivity(i,j)=0;
else
R_up(i,j)=(1-kernel_fun(i,j)).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=2*sum(sum((ones(X_num,K)-kernel_fun).*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(kernel_fun.*(responsivity.^(alpha)))'*X; %μ的分子部分
para_miu=miu_up./(sum(kernel_fun.*(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
%if norm(responsivity(t)-responsivity(t-1))<=eps
break;
end
end
end
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);
fitness_min=fitness(iter);
succeed.m
function accuracy=succeed(real_label,K,id)
%输入K:聚的类,id:训练后的聚类结果,N*1的矩阵
N=size(id,1); %样本个数
p=perms(1:K); %全排列矩阵
p_col=size(p,1); %全排列的行数
new_label=zeros(N,p_col); %聚类结果的所有可能取值,N*p_col
num=zeros(1,p_col); %与真实聚类结果一样的个数
%将训练结果全排列为N*p_col的矩阵,每一列为一种可能性
for i=1:N
for j=1:p_col
for k=1:K
if id(i)==k
new_label(i,j)=p(j,k); %iris数据库,1 2 3
end
end
end
end
%与真实结果比对,计算精确度
for j=1:p_col
for i=1:N
if new_label(i,j)==real_label(i)
num(j)=num(j)+1;
end
end
end
accuracy=max(num)/N;
3.结果
>> data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
>> data=data_load(:,1:4);
>> real_label=data_load(:,5);
>> [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,3)
第 1 次,FCM的迭代次数为:24,KFCM的迭代次数为: 7,准确度为:0.88000000
第 2 次,FCM的迭代次数为:29,KFCM的迭代次数为: 6,准确度为:0.90666667
第 3 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 4 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 5 次,FCM的迭代次数为:24,KFCM的迭代次数为: 5,准确度为:0.90666667
第 6 次,FCM的迭代次数为:21,KFCM的迭代次数为: 4,准确度为:0.90000000
第 7 次,FCM的迭代次数为:20,KFCM的迭代次数为: 5,准确度为:0.90666667
第 8 次,FCM的迭代次数为:23,KFCM的迭代次数为: 4,准确度为:0.90000000
第 9 次,FCM的迭代次数为:24,KFCM的迭代次数为: 4,准确度为:0.90000000
第 10 次,FCM的迭代次数为:19,KFCM的迭代次数为: 5,准确度为:0.88666667
第 11 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 12 次,FCM的迭代次数为:30,KFCM的迭代次数为: 5,准确度为:0.89333333
第 13 次,FCM的迭代次数为:30,KFCM的迭代次数为: 7,准确度为:0.88000000
第 14 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 15 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.90666667
第 16 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000
第 17 次,FCM的迭代次数为:14,KFCM的迭代次数为: 7,准确度为:0.88000000
第 18 次,FCM的迭代次数为:16,KFCM的迭代次数为: 7,准确度为:0.88000000
第 19 次,FCM的迭代次数为:22,KFCM的迭代次数为: 6,准确度为:0.90666667
第 20 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000 ave_acc_KFCM = 0.894000000000000 max_acc_FCM = 0.906666666666667 min_acc_FCM = 0.880000000000000 run_time = 2.015625000000000
4.注意
这篇文章介绍KFCM的实现过程,用FCM初始化聚类中心,而不是随机初始化,性能比FCM好一些。如有不对之处,望指正。
KFCM算法的matlab程序(用FCM初始化聚类中心)的更多相关文章
- KFCM算法的matlab程序
KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...
- FCM算法的matlab程序2
FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...
- FCM算法的matlab程序
FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- FCM算法的matlab程序(初步)
FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- GMM算法的matlab程序
GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- GMM算法的matlab程序(初步)
GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- K-means算法的matlab程序
K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...
- K-means算法的matlab程序(初步)
K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...
- ISODATA聚类算法的matlab程序
ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...
随机推荐
- QApplication:No such file or directory 错误解决
首先打开 Makefile 文件,查看其中 INCPATH 变量的值是否包含程序中所涉及到的头文件路径. MAKEFILE = Makefile ####### Compiler, tools and ...
- pxe+http+kickstart实验原理
1.说明 所谓的PXE是Preboot Execution Environment的缩写,字面上的意思是开机前的执行环境. 要实现pxe,至少需要3个服务 2.流程 注意:全部用的udp封装 1)cl ...
- HBase命令终端测试
[root@CloudDeskTop ~]# su -l hadoop[hadoop@CloudDeskTop ~]$ cd /software/hbase-1.2.6/bin/ [hadoop@Cl ...
- OpenCV入门之获取验证码的单个字符(二)
在文章 OpenCV入门之获取验证码的单个字符(字符切割)中,介绍了一类验证码的处理方法,该验证码如下: 该验证码的特点是字母之间的间隔较大,很容易就能提取出其中的单个字符.接下来,笔者将会介绍如 ...
- C#通过调用WinApi打印PDF文档类,服务器PDF打印、IIS PDF打印
其他网站下载来的类,可以用于Winform.Asp.Net,用于服务器端PDF或其他文件打印. 直接上代码: using System; using System.Collections.Generi ...
- DropDownList按照Gridview获取数据获取到的是定义格式
首先需要把DropDownList改成允许服务器返回. 然后绑定的时候需要以下两项. DropDownList1.DataTextField = "name";DropDownLi ...
- python之turtle简单绘制学习
一.方法 1.forward() | fd():向前移动指定的距离.参数:一个数字(integer or float)). turtle.forward(25) 2.backward() | bk() ...
- Linux-read 命令(20)
Linux read 命令 参数说明: -a 后跟一个变量,该变量会被认为是个数组,然后给其赋值,默认是以空格为分割符. -d 后面跟一个标志符,其实只有其后的第一个字符有用,作为结束的标志. -p ...
- Mybatis框架可视化(1)
Mybatis整体架构视图: 接 口 层 SqlSession (定义了Mybatis暴露给应用程序调用的API) 核 心 处 理 层 配置解析 (加载核心配置.映射配置. mapper接口注解信息, ...
- JS使用cookie实现只出现一次的广告代码效果
我们上网经常会遇到第一次需要登录而之后不用再登录的网站的情况,其实是运用了Cookie 存储 web 页面的用户信息,Cookie 以名/值对形式存储,当浏览器从服务器上请求 web 页面时, 属于该 ...