KFCM算法的matlab程序(用FCM初始化聚类中心)
KFCM算法的matlab程序(用FCM初始化聚类中心)
在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与运行时间。
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/
1.iris数据
iris.data
5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3
2.源程序
Eg_KFCM.m
function [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,K)
%输入K:聚的类,max_iter是最大迭代次数,T:遗传算法最大迭代次数,n:种群个数
%输出ave_acc_KFCM:迭代max_iter次之后的平均准确度,iter:实际KFCM迭代次数
% data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
% data=data_load(:,1:4);
% real_label=data_load(:,5);
t0=cputime;
max_iter=20;
s=0;
accuracy=zeros(max_iter,1);
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
for i=1:max_iter
%随机初始化K个聚类中心
% rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
% para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
[~,para_miu,iter_FCM]=My_FCM2(X,K);
[label_1,iter_KFCM]=My_KFCM(X,K,para_miu);
accuracy(i)=succeed(real_label,K,label_1);
s=s+accuracy(i);
fprintf('第 %2d 次,FCM的迭代次数为:%2d,KFCM的迭代次数为:%2d,准确度为:%.8f\n', i, iter_FCM, iter_KFCM, accuracy(i));
end
ave_acc_KFCM=s/max_iter;
max_acc_FCM=max(accuracy);
min_acc_FCM=min(accuracy);
run_time=cputime-t0;
My_FCM2.m
function [label_1,para_miu_new,iter]=My_FCM2(X,K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
fitness=zeros(T,1);
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化K个聚类中心
rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% FCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if distant(i,j)==1
responsivity(i,j)=0;
elseif distant(i,j)==0
responsivity(i,j)=1./sum(responsivity(i,:)==0);
else
R_up(i,j)=distant(i,j).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=sum(sum(distant.*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(responsivity'.^(alpha))*X; %μ的分子部分
para_miu=miu_up./((sum(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
break;
end
end
end
para_miu_new=para_miu;
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);
My_KFCM.m
function [label_1,iter,fitness_min]=My_KFCM(X,K,para_miu)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
sigma_1=150; %高斯核函数的参数
[X_num,X_dim]=size(X);
fitness=zeros(X_num,1);
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% KFCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%高斯核函数,X_num*K的矩阵
kernel_fun=exp((-distant)./(2*sigma_1*sigma_1));
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if kernel_fun(i,j)==1
responsivity(i,j)=0;
else
R_up(i,j)=(1-kernel_fun(i,j)).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=2*sum(sum((ones(X_num,K)-kernel_fun).*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(kernel_fun.*(responsivity.^(alpha)))'*X; %μ的分子部分
para_miu=miu_up./(sum(kernel_fun.*(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
%if norm(responsivity(t)-responsivity(t-1))<=eps
break;
end
end
end
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);
fitness_min=fitness(iter);
succeed.m
function accuracy=succeed(real_label,K,id)
%输入K:聚的类,id:训练后的聚类结果,N*1的矩阵
N=size(id,1); %样本个数
p=perms(1:K); %全排列矩阵
p_col=size(p,1); %全排列的行数
new_label=zeros(N,p_col); %聚类结果的所有可能取值,N*p_col
num=zeros(1,p_col); %与真实聚类结果一样的个数
%将训练结果全排列为N*p_col的矩阵,每一列为一种可能性
for i=1:N
for j=1:p_col
for k=1:K
if id(i)==k
new_label(i,j)=p(j,k); %iris数据库,1 2 3
end
end
end
end
%与真实结果比对,计算精确度
for j=1:p_col
for i=1:N
if new_label(i,j)==real_label(i)
num(j)=num(j)+1;
end
end
end
accuracy=max(num)/N;
3.结果
>> data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
>> data=data_load(:,1:4);
>> real_label=data_load(:,5);
>> [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,3)
第 1 次,FCM的迭代次数为:24,KFCM的迭代次数为: 7,准确度为:0.88000000
第 2 次,FCM的迭代次数为:29,KFCM的迭代次数为: 6,准确度为:0.90666667
第 3 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 4 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 5 次,FCM的迭代次数为:24,KFCM的迭代次数为: 5,准确度为:0.90666667
第 6 次,FCM的迭代次数为:21,KFCM的迭代次数为: 4,准确度为:0.90000000
第 7 次,FCM的迭代次数为:20,KFCM的迭代次数为: 5,准确度为:0.90666667
第 8 次,FCM的迭代次数为:23,KFCM的迭代次数为: 4,准确度为:0.90000000
第 9 次,FCM的迭代次数为:24,KFCM的迭代次数为: 4,准确度为:0.90000000
第 10 次,FCM的迭代次数为:19,KFCM的迭代次数为: 5,准确度为:0.88666667
第 11 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 12 次,FCM的迭代次数为:30,KFCM的迭代次数为: 5,准确度为:0.89333333
第 13 次,FCM的迭代次数为:30,KFCM的迭代次数为: 7,准确度为:0.88000000
第 14 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 15 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.90666667
第 16 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000
第 17 次,FCM的迭代次数为:14,KFCM的迭代次数为: 7,准确度为:0.88000000
第 18 次,FCM的迭代次数为:16,KFCM的迭代次数为: 7,准确度为:0.88000000
第 19 次,FCM的迭代次数为:22,KFCM的迭代次数为: 6,准确度为:0.90666667
第 20 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000
ave_acc_KFCM =
0.894000000000000
max_acc_FCM =
0.906666666666667
min_acc_FCM =
0.880000000000000
run_time =
2.015625000000000
4.注意
这篇文章介绍KFCM的实现过程,用FCM初始化聚类中心,而不是随机初始化,性能比FCM好一些。如有不对之处,望指正。
KFCM算法的matlab程序(用FCM初始化聚类中心)的更多相关文章
- KFCM算法的matlab程序
KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...
- FCM算法的matlab程序2
FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...
- FCM算法的matlab程序
FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- FCM算法的matlab程序(初步)
FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- GMM算法的matlab程序
GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- GMM算法的matlab程序(初步)
GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- K-means算法的matlab程序
K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...
- K-means算法的matlab程序(初步)
K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...
- ISODATA聚类算法的matlab程序
ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...
随机推荐
- 一张图,让你和面试官聊一个小时的“Java内存模型”
如果面试官问你:你了解 Java 内存模型吗? 你就可以使用这张图,按照这张图中的顺序和面试官开聊,正常情况下,聊一个小时是差不多的,这个时候,对你的处境是非常有益的,因为面试官的时间不多了.
- Apollo 8 — ConfigService 异步轮询接口的实现
源码 Apollo 长轮询的实现,是通过客户端轮询 /notifications/v2 接口实现的.具体代码在 com.ctrip.framework.apollo.configservice.con ...
- iOS网络请求-AFNetworking源码解析
趁着端午节日,自己没有什么过多的安排,准备花4-5天左右,针对网络请求源码AFNetworking和YTKNetwork进行解析以及这两年多iOS实际开发经验(其实YTKNetwork也是对AFNet ...
- iOS 快速排序
一.快速排序概念及其思想 快速排序(QuickSort),又称为交换排序,是分治算法的一种,快速排序采用分治的策略. 1.分治法的基本思想: 将原问题分解为若干个规模更小但结构和原问题相似的子问题.递 ...
- RNN入门(一)识别MNIST数据集
RNN介绍 在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Netwo ...
- [转]调整 VirtualBox 虚拟机的磁盘大小
本文转自:https://cnzhx.net/blog/resizing-lvm-centos-virtualbox-guest/ 发表于 2013-08-20 作者 H Zeng 更新于 2016- ...
- C#中saveFileDialog(另存为)保存图片文件
弹出另存为提示框保存图片文件: //用户自由选择指定路径保存文件 SaveFileDialog savedialog = new SaveFileDialog(); ...
- 我永远喜欢着OOP——第一次总结
我永远喜欢着OOP--第一次总结 一.三次作业总结分析 1. 第一次作业 1.1 作业分析 第一作业主要是给我们引入了一个对于非法输入处理的思想,包括第一次上机,都一直围绕着一个全新的主题,就是非法输 ...
- thinkphp简洁、美观、靠谱的分页类
我们要实现如下图分页效果 这个分页类是在thinkphp框架内置的分页类的基础上修改而来:原分页类的一些设计,在实际运用中感觉不是很方便: 1.只有一页内容时不显示分页: 2.原分页类在当前页是第一页 ...
- react-conponent-hellocynthia
<!DOCTYPE html> <html> <head> <script src="../../build/react.js">& ...