JVM源码分析之SystemGC完全解读

概述

JVM的GC一般情况下是JVM本身根据一定的条件触发的,不过我们还是可以做一些人为的触发,比如通过jvmti做强制GC,通过System.gc触发,还可以通过jmap来触发等,针对每个场景其实我们都可以写篇文章来做一个介绍,本文重点介绍下System.gc的原理

或许大家已经知道如下相关的知识

  • system.gc其实是做一次full gc
  • system.gc会暂停整个进程
  • system.gc一般情况下我们要禁掉,使用-XX:+DisableExplicitGC
  • system.gc在cms gc下我们通过-XX:+ExplicitGCInvokesConcurrent来做一次稍微高效点的GC(效果比Full GC要好些)
  • system.gc最常见的场景是RMI/NIO下的堆外内存分配等

如果你已经知道上面这些了其实也说明你对System.gc有过一定的了解,至少踩过一些坑,但是你是否更深层次地了解过它,比如

  • 为什么CMS GC下-XX:+ExplicitGCInvokesConcurrent这个参数加了之后会比真正的Full GC好?
  • 它如何做到暂停整个进程?
  • 堆外内存分配为什么有时候要配合System.gc?

如果你上面这些疑惑也都知道,那说明你很懂System.gc了,那么接下来的文字你可以不用看啦

JDK里的System.gc的实现

先贴段代码吧(java.lang.System)

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  1. /**
  2. * Runs the garbage collector.
  3. * <p>
  4. * Calling the <code>gc</code> method suggests that the Java Virtual
  5. * Machine expend effort toward recycling unused objects in order to
  6. * make the memory they currently occupy available for quick reuse.
  7. * When control returns from the method call, the Java Virtual
  8. * Machine has made a best effort to reclaim space from all discarded
  9. * objects.
  10. * <p>
  11. * The call <code>System.gc()</code> is effectively equivalent to the
  12. * call:
  13. * <blockquote><pre>
  14. * Runtime.getRuntime().gc()
  15. * </pre></blockquote>
  16. *
  17. * @see java.lang.Runtime#gc()
  18. */
  19. public static void gc() {
  20. Runtime.getRuntime().gc();
  21. }

发现主要调用的是Runtime里的gc方法(java.lang.Runtime)

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  1. /**
  2. * Runs the garbage collector.
  3. * Calling this method suggests that the Java virtual machine expend
  4. * effort toward recycling unused objects in order to make the memory
  5. * they currently occupy available for quick reuse. When control
  6. * returns from the method call, the virtual machine has made
  7. * its best effort to recycle all discarded objects.
  8. * <p>
  9. * The name <code>gc</code> stands for "garbage
  10. * collector". The virtual machine performs this recycling
  11. * process automatically as needed, in a separate thread, even if the
  12. * <code>gc</code> method is not invoked explicitly.
  13. * <p>
  14. * The method {@link System#gc()} is the conventional and convenient
  15. * means of invoking this method.
  16. */
  17. public native void gc();

这里看到gc方法是native的,在java层面只能到此结束了,代码只有这么多,要了解更多,可以看方法上面的注释,不过我们需要更深层次地来了解其实现,那还是准备好进入到jvm里去看看

Hotspot里System.gc的实现

如何找到native里的实现

上面提到了Runtime.gc是一个本地方法,那需要先在jvm里找到对应的实现,这里稍微提一下jvm里native方法最常见的也是最简单的查找,jdk里一般含有native方法的类,一般都会有一个对应的c文件,比如上面的java.lang.Runtime这个类,会有一个Runtime.c的文件和它对应,native方法的具体实现都在里面了,如果你有source,可能会猜到和下面的方法对应

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  1. JNIEXPORT void JNICALL
  2. Java_java_lang_Runtime_gc(JNIEnv *env, jobject this)
  3. {
  4. JVM_GC();
  5. }

其实没错的,就是这个方法,jvm要查找到这个native方法其实很简单的,看方法名可能也猜到规则了,Java_pkgName_className_methodName,其中pkgName里的".“替换成”_“,这样就能找到了,当然规则不仅仅只有这么一个,还有其他的,这里不细说了,有机会写篇文章详细介绍下其中细节

DisableExplicitGC参数

上面的方法里是调用JVM_GC(),实现如下

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  1. JVM_ENTRY_NO_ENV(void, JVM_GC(void))
  2. JVMWrapper("JVM_GC");
  3. if (!DisableExplicitGC) {
  4. Universe::heap()->collect(GCCause::_java_lang_system_gc);
  5. }
  6. JVM_END

看到这里我们已经解释其中一个疑惑了,就是DisableExplicitGC这个参数是在哪里生效的,起的什么作用,如果这个参数设置为true的话,那么将直接跳过下面的逻辑,我们通过-XX:+ DisableExplicitGC就是将这个属性设置为true,而这个属性默认情况下是true还是false呢

  1. 1
  2. 2
  1. product(bool, DisableExplicitGC, false, \
  2. "Tells whether calling System.gc() does a full GC")

ExplicitGCInvokesConcurrent参数

这里主要针对CMSGC下来做分析,所以我们上面看到调用了heap的collect方法,我们找到对应的逻辑

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  28. 28
  29. 29
  1. void GenCollectedHeap::collect(GCCause::Cause cause) {
  2. if (should_do_concurrent_full_gc(cause)) {
  3. #ifndef SERIALGC
  4. // mostly concurrent full collection
  5. collect_mostly_concurrent(cause);
  6. #else // SERIALGC
  7. ShouldNotReachHere();
  8. #endif // SERIALGC
  9. } else {
  10. #ifdef ASSERT
  11. if (cause == GCCause::_scavenge_alot) {
  12. // minor collection only
  13. collect(cause, 0);
  14. } else {
  15. // Stop-the-world full collection
  16. collect(cause, n_gens() - 1);
  17. }
  18. #else
  19. // Stop-the-world full collection
  20. collect(cause, n_gens() - 1);
  21. #endif
  22. }
  23. }
  24. bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  25. return UseConcMarkSweepGC &&
  26. ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
  27. (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  28. }

collect里一开头就有个判断,如果should_do_concurrent_full_gc返回true,那会执行collect_mostly_concurrent做并行的回收

其中should_do_concurrent_full_gc中的逻辑是如果使用CMS GC,并且是system gc且ExplicitGCInvokesConcurrent==true,那就做并行full gc,当我们设置-XX:+ ExplicitGCInvokesConcurrent的时候,就意味着应该做并行Full GC了,不过要注意千万不要设置-XX:+DisableExplicitGC,不然走不到这个逻辑里来了

并行Full GC相对正常的Full GC效率高在哪里

stop the world

说到GC,这里要先提到VMThread,在jvm里有这么一个线程不断轮询它的队列,这个队列里主要是存一些VM_operation的动作,比如最常见的就是内存分配失败要求做GC操作的请求等,在对gc这些操作执行的时候会先将其他业务线程都进入到安全点,也就是这些线程从此不再执行任何字节码指令,只有当出了安全点的时候才让他们继续执行原来的指令,因此这其实就是我们说的stop the world(STW),整个进程相当于静止了

CMS GC

这里必须提到CMS GC,因为这是解释并行Full GC和正常Full GC的关键所在,CMS GC我们分为两种模式background和foreground,其中background顾名思义是在后台做的,也就是可以不影响正常的业务线程跑,触发条件比如说old的内存占比超过多少的时候就可能触发一次background式的cms gc,这个过程会经历CMS GC的所有阶段,该暂停的暂停,该并行的并行,效率相对来说还比较高,毕竟有和业务线程并行的gc阶段;而foreground则不然,它发生的场景比如业务线程请求分配内存,但是内存不够了,于是可能触发一次cms gc,这个过程就必须是要等内存分配到了线程才能继续往下面走的,因此整个过程必须是STW的,因此CMS GC整个过程都是暂停应用的,但是为了提高效率,它并不是每个阶段都会走的,只走其中一些阶段,这些省下来的阶段主要是并行阶段,Precleaning、AbortablePreclean,Resizing这几个阶段都不会经历,其中sweep阶段是同步的,但不管怎么说如果走了类似foreground的cms gc,那么整个过程业务线程都是不可用的,效率会影响挺大。CMS GC具体的过程后面再写文章详细说,其过程确实非常复杂的

正常的Full GC

正常的Full GC其实是整个gc过程包括ygc和cms gc(这里说的是真正意义上的Full GC,还有些场景虽然调用Full GC的接口,但是并不会都做,有些时候只做ygc,有些时候只做cms gc)都是由VMThread来执行的,因此整个时间是ygc+cms gc的时间之和,其中CMS GC是上面提到的foreground式的,因此整个过程会比较长,也是我们要避免的

并行的Full GC

并行Full GC也通样会做YGC和CMS GC,但是效率高就搞在CMS GC是走的background的,整个暂停的过程主要是YGC+CMS_initMark+CMS_remark几个阶段

堆外内存常配合使用System GC

这里说的堆外内存主要针对java.nio.DirectByteBuffer,这些对象的创建过程会通过Unsafe接口直接通过os::malloc来分配内存,然后将内存的起始地址和大小存到java.nio.DirectByteBuffer对象里,这样就可以直接操作这些内存。这些内存只有在DirectByteBuffer回收掉之后才有机会被回收,因此如果这些对象大部分都移到了old,但是一直没有触发CMS GC或者Full GC,那么悲剧将会发生,因为你的物理内存被他们耗尽了,因此为了避免这种悲剧的发生,通过-XX:MaxDirectMemorySize来指定最大的堆外内存大小,当使用达到了阈值的时候将调用System.gc来做一次full gc,以此来回收掉没有被使用的堆外内存,具体堆外内存是如何回收的,其原理机制又是怎样的,还是后面写篇详细的文章吧

微信公众号【黄小斜】大厂程序员,互联网行业新知,终身学习践行者。关注后回复「Java」、「Python」、「C++」、「大数据」、「机器学习」、「算法」、「AI」、「Android」、「前端」、「iOS」、「考研」、「BAT」、「校招」、「笔试」、「面试」、「面经」、「计算机基础」、「LeetCode」 等关键字可以获取对应的免费学习资料。

JVM源码分析之SystemGC完全解读的更多相关文章

  1. JVM源码分析之FinalReference完全解读

    Java对象引用体系除了强引用之外,出于对性能.可扩展性等方面考虑还特地实现了4种其他引用:SoftReference.WeakReference.PhantomReference.FinalRefe ...

  2. JVM源码分析之栈溢出完全解读

    概述 之所以想写这篇文章,其实是因为最近有不少系统出现了栈溢出导致进程crash的问题,并且很隐蔽,根本原因还得借助coredump才能分析出来,于是想从JVM实现的角度来全面分析下栈溢出的这类问题, ...

  3. JVM源码分析之堆外内存完全解读

    JVM源码分析之堆外内存完全解读   寒泉子 2016-01-15 17:26:16 浏览6837 评论0 阿里技术协会 摘要: 概述 广义的堆外内存 说到堆外内存,那大家肯定想到堆内内存,这也是我们 ...

  4. JVM源码分析之一个Java进程究竟能创建多少线程

    JVM源码分析之一个Java进程究竟能创建多少线程 原创: 寒泉子 你假笨 2016-12-06 概述 虽然这篇文章的标题打着JVM源码分析的旗号,不过本文不仅仅从JVM源码角度来分析,更多的来自于L ...

  5. JVM源码分析之Metaspace解密

        概述 metaspace,顾名思义,元数据空间,专门用来存元数据的,它是jdk8里特有的数据结构用来替代perm,这块空间很有自己的特点,前段时间公司这块的问题太多了,主要是因为升级了中间件所 ...

  6. JVM源码分析-JVM源码编译与调试

    要分析JVM的源码,结合资料直接阅读是一种方式,但是遇到一些想不通的场景,必须要结合调试,查看执行路径以及参数具体的值,才能搞得明白.所以我们先来把JVM的源码进行编译,并能够使用GDB进行调试. 编 ...

  7. JVM源码分析之警惕存在内存泄漏风险的FinalReference(增强版)

    概述 JAVA对象引用体系除了强引用之外,出于对性能.可扩展性等方面考虑还特地实现了四种其他引用:SoftReference.WeakReference.PhantomReference.FinalR ...

  8. JVM源码分析-类加载场景实例分析

    A类调用B类的静态方法,除了加载B类,但是B类的一个未被调用的方法间接使用到的C类却也被加载了,这个有意思的场景来自一个提问:方法中使用的类型为何在未调用时尝试加载?. 场景如下: public cl ...

  9. JVM源码分析之堆内存的初始化

    原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 “365篇原创计划”第十五篇. ​ 今天呢!灯塔君跟大家讲: JVM源码分析之堆内存的初始化   堆初始化 Java堆的初始化入口位于Univ ...

随机推荐

  1. [html]CSS中的margin、border、padding区别

    图解CSS padding.margin.border属性W3C组织建议把所有网页上的对像都放在一个盒(box)中,设计师可以通过创建定义来控制这个盒的属性,这些对像包括段落.列表.标题.图片以及层. ...

  2. IntelliJ IDEA 控制台中文乱码解决方案

    配置Intellij的配置文件(在idea安装目录bin目录下) 打开Intellij的根目录,找到下图的两个文件(根据你的系统是32位或64位选择其中一个配置文件),在配置文件中添加: -Dfile ...

  3. Vue下载页面显示内容

    摘抄自 https://www.cnblogs.com/zhangtianqi520/p/9323873.html 先下载所需依赖 npm install --save html2canvas npm ...

  4. 简述Oracle IOT(Index Organized Table)

    转:http://blog.itpub.net/17203031/viewspace-744477 对关系型数据库产品(RDBMS)而言,一个重要特性就是:数据信息都被组织为二维数据表,信息的表达可以 ...

  5. android-mediaplayer播放

    优先参考 待补充.android 8.0

  6. js实现图片查看器(图片的缩放、旋转、拖拽)

    一.关于图片查看器. 目前网络上能找到的图片查看器很多,谁便一搜就能出来.如:jquery.iviewer.js.Viewer.js这两个js文件,其中功能也足够满足大部分开发需求.但是单纯的就想实现 ...

  7. JavaScript复习笔记——数据类型

    1.undefined 使用var声明但未对其进行初始化时,这个变量的值就是undefined. 对未被初始化的值使用typeof会返回undefined值,而对未声明的变量执行typeof操作同样也 ...

  8. Android中监控home键

    一.需求 在应用开发过程中,启动服务开启线程锁等待服务返回解锁,为了避免点击home键使线程锁卡死的bug,需要监控home键,解锁线程. 二.实现 在应用时,需要register和unregiste ...

  9. eclipse maven install 报错 jdk rather than jre?

    解决方案:window => Perference => java => install jre => 选中jre => edit => 选择文件夹为jdk的

  10. 中间件 activeMQ Jms Java Demo

    一.什么是ActiveMQ 百度解释: ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provi ...