【bzoj 3110】[Zjoi2013]K大数查询
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c。如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M。
接下来M行,每行形如1 a b c或2 a b c。
Output
输出每个询问的结果。
Sample Input
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
1
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3大的数是 1 。
N,M<=50000,N,M<=50000,a<=b<=N,1操作中abs(c)<=N,2操作中c<=Maxlongint。
整体二分裸题……顺便可以了解一下用树状数组实现区间加和区间求和操作。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#define LL long long
using namespace std;
const int N=1e5+;
int n,m,qid,mx,ans[N];
LL tr[N][];
bool f[N];
struct node{int op,l,r,c,id;}a[N],tmp[N];
LL read()
{
LL x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int lowbit(int x){return x&(-x);}
void add(int x,LL c,int id){while(x<=n)tr[x][id]+=c,x+=lowbit(x);}
void insert(int id,LL c){add(id,c,);add(id,c*id,);}
LL query(int x,int id){LL ans=;while(x)ans+=tr[x][id],x-=lowbit(x);return ans;}
LL ask(int id){LL ans=(id+)*query(id,)-query(id,);return ans;}
void work(int x,int y,int l,int r)
{
if(l==r){for(int i=x;i<=y;i++)if(a[i].op==)ans[a[i].id]=l;return;}
int h1=x,h2=x,mid=(l+r)>>;
for(int i=x;i<=y;i++)
if(a[i].op==)
{
LL temp=ask(a[i].r)-ask(a[i].l-);
if(temp<a[i].c)f[i]=false,a[i].c-=temp;
else f[i]=true,h2++;
}
else if(a[i].c<=mid)insert(a[i].l,),insert(a[i].r+,-),f[i]=true,h2++;
else f[i]=false;
for(int i=x;i<=y;i++)if(a[i].op==&&a[i].c<=mid)insert(a[i].l,-),insert(a[i].r+,);
for(int i=x;i<=y;i++)if(f[i])tmp[h1++]=a[i];else tmp[h2++]=a[i];
for(int i=x;i<=y;i++)a[i]=tmp[i];
work(x,h1-,l,mid);work(h1,y,mid+,r);
}
int main()
{
n=read();m=read();
for(int i=;i<=m;i++)
{
a[i].op=read();a[i].l=read();a[i].r=read();a[i].c=read();
if(a[i].op==)a[i].c=n-a[i].c+,mx=max(mx,a[i].c);
else a[i].id=++qid;
}
work(,m,,mx);
for(int i=;i<=qid;i++)printf("%d\n",n-ans[i]+);
return ;
}
【bzoj 3110】[Zjoi2013]K大数查询的更多相关文章
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 & 3236 [Ahoi2013] 作业 题解
[原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 978 Solved: 476 Descri ...
- bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1384 Solved: 629[Submit][Stat ...
- BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )
BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...
- BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 418 Solved: 235 [ Submit][ ...
- BZOJ 3110 [Zjoi2013]K大数查询(整体二分)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 11654 Solved: 3505[Submit][St ...
- [BZOJ 3110] [Zjoi2013] K大数查询 【树套树】
题目链接: BZOJ - 3110 题目分析 这道题是一道树套树的典型题目,我们使用线段树套线段树,一层是区间线段树,一层是权值线段树.一般的思路是外层用区间线段树,内层用权值线段树,但是这样貌似会很 ...
- BZOJ 3110 [Zjoi2013]K大数查询 (CDQ分治+树状数组)
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...
- bzoj 3110 [Zjoi2013]K大数查询——线段树套线段树(标记永久化)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 第一道线段树套线段树! 第一道标记永久化! 为什么为什么写了两个半小时啊…… 本想线段 ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
随机推荐
- [agc016B][Colorful Hats]
题目链接 思路 首先,如果没人说谎那么序列中肯定只有一大一小两种数,假设大的数为x,小的数为y.因为对于每个人只有两种情况,要么自己与除自己外的某个人拥有相同的颜色,此时总颜色数就是这个人所能看到的颜 ...
- [luogu1970][花匠]
题目地址 https://www.luogu.org/problemnew/show/P1970 题目描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定 把这排中的一部 ...
- 收藏:win32 控件之 sysLink控件(超链接)
来源:https://blog.csdn.net/dai_jing/article/details/8683487 手动创建syslink(msdn): CreateWindowEx(, WC_LIN ...
- ImageMagick - MAGICK_CODER_MODULE_PATH 测试结果, 很受伤
//通过查看 ImageMagick 源代码: http://code.metager.de/source/xref/ImageMagick/MagickCore/module.c#552 //首先会 ...
- python的变量与注释
1. 变量 变量:值会发生变化的量,与常量相对. Python有五个标准的数据类型:1. 数字(int,long,float,complex) 2.字符串 3.元组 ...
- 【清北学堂2018-刷题冲刺】Contest 1
Task 1:最小公倍数 输入n,求n与246913578的最小公倍数. 结果对1234567890取模. [样例输入] 3 [样例输出] 246913578 [数据规模和约定] 对于30%的数据 ...
- (暴力求解)Encoding HDU1020
Encoding 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1020 Time Limit: 2000/1000 MS (Java/Others) ...
- okhttp添加自定义cookie
package cn.x.request; import java.util.ArrayList; import java.util.HashMap; import java.util.Lis ...
- SPI设计
目录 SPI设计 概述 寄存器配置 title: SPI设计 tags: ARM date: 2018-11-05 15:22:59 --- SPI设计 概述 在SPI协议中,有两个值来确定SPI的模 ...
- sp_change_users_login 'Update_One', '用户名', '登录名';
每次从服务器上备份好数据库(Sql Server数据库),如果将备份数据库文件在本地恢复,总会产生用户权限的问题. 经过很多次的实验后,我发现有那么一条语句可以发挥作用,就是sp_change_use ...