LYOI 2016 Summer 函数 【线段树】
<题目链接>
题目大意:
1.M i k b,把第i个函数改为 fi(x)=kx+b。
2.Q l r x,询问 fr(fr−1(…fl(x))) mod 1000000007的值。
接下来n行,每行两个整数,表示 ki,bi。
接下来m行,每行的格式为 M i k b 或 Q l r x。
输出
5 5
4 2
3 6
5 7
2 6
7 5
Q 1 5 1
Q 3 3 2
M 3 10 6
Q 1 4 3
Q 3 4 4
输出
1825
17
978
98
n,m≤200000,k,b,x<1000000007。
解题分析:
其实就是简单的单点修改和区间查询,只不过需要将每个节点对应的函数嵌套后得到的表达式看成普通线段树每个节点对应区间的区间和,只要抽象的转化为这个模型,本题就好做了。
#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std; #define Lson rt<<1,l,mid
#define Rson rt<<1|1,mid+1,r
typedef long long ll;
const ll mod = 1e9+;
const int M = 2e5+;
int cur1[M],cur2[M];
int n,m;
struct node{
ll k,b;
}tr[M<<];
node cal(node x,node y){ //将Fy(Fx)的嵌套关系合并,其实就是将里面的一元一次函数乘出来
node tmp;
tmp.k=(x.k*y.k)%mod;
tmp.b=((y.k*x.b)%mod+y.b)%mod;
return tmp;
}
void Pushup(int rt){ //根据函数嵌套关系维护函数嵌套值,相当于该区间对应函数的嵌套值看成普通线段树的区间和(这个思路非常妙)
tr[rt] = cal(tr[rt<<],tr[rt<<|]);
}
void build(int rt,int l,int r){
if (l==r){
tr[rt].k=cur1[l],tr[rt].b=cur2[l];
return;
}
int mid = (l+r)>>;
build(Lson);
build(Rson);
Pushup(rt);
}
void update(int rt,int l,int r,int loc,int tmp1,int tmp2)
{
if (l==r){
tr[rt].k=tmp1,tr[rt].b=tmp2; //单点更新该函数的系数
return;
}
int mid = (l+r)>>;
if (loc<=mid) update(Lson,loc,tmp1,tmp2);
else update(Rson,loc,tmp1,tmp2);
Pushup(rt);
}
node query (int rt,int l,int r,int L,int R)
{
if (l==L&&r==R)return tr[rt];
int mid = (l+r)>>;
if (R<=mid)return query(Lson,L,R);
else if (L>mid)return query(Rson,L,R);
else return cal(query(Lson,L,mid),query(Rson,mid+,R));
}
/*node query(int rt,int l,int r,int L,int R){ //为什么我这样查询区间函数嵌套和不行???
if(l<=l&&r<=R)return tr[rt];
int mid=(l+r)>>1;
node tmp;
tmp.k=1,tmp.b=0;
if(L<=mid)tmp=cal(query(Lson,L,R),tmp);
if(R>mid)tmp=cal(query(Rson,L,R),tmp);
return tmp;
}*/
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;++i)
scanf("%d%d",&cur1[i],&cur2[i]);
build(,,n);
char op[];
while(m--){
scanf("%s",op);
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
if (op[]=='M'){
update(,,n,x,y,c);
}
else{
node tmp=query(,,n,x,y);
ll ans = ((tmp.k*c)%mod+tmp.b)%mod;
printf("%lld\n",ans);
}
}
return ;
}
2018-10-13
LYOI 2016 Summer 函数 【线段树】的更多相关文章
- LightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+线段树
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> ...
- loj1370(欧拉函数+线段树)
传送门:Bi-shoe and Phi-shoe 题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和. 分析:先预处理出1~1e6的欧拉函数,然后建立一颗 ...
- [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)
这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
- 【博弈论】【SG函数】【线段树】Petrozavodsk Summer Training Camp 2016 Day 9: AtCoder Japanese Problems Selection, Thursday, September 1, 2016 Problem H. Cups and Beans
一开始有n个杯子,每个杯子里有一些豆子,两个人轮流操作,每次只能将一个豆子移动到其所在杯子之前的某个杯子里,不过可以移动到的范围只有一段区间.问你是否先手必胜. 一个杯子里的豆子全都等价的,因为sg函 ...
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
随机推荐
- 不想用ssh框架
学过三遍多的样子,没有感悟到特别多的好处. 现在工作都用,想找一个不用这个的工作就不好找.c的话,觉得没有Java面向对象提炼得好. 不是很明白怎么都用,知道自己不想用.里边太多复杂和要背下来的东西, ...
- Confluence 6 指定日志选项和已知问题
指定 Confluence 日志选项 这里是一些特定的日志配置,你可能在对问题进行调试的时候需要. 在日志中记录数据库使用的 SQL 查询请求 你可能希望增加日志的中的内容,记录 Confluence ...
- 【linux】shell代码,获取当前路径,创建文件夹
#!/bin/bash CURRENT_PATH=`` cd $CURRENT_PATH MY_LOG=/var/log MY_DB=/var/lib/db [ ! -d $MY_LOG ] & ...
- Laravel5.7 跨域解决
先检查app/Http/Middleware/ 下是否有EnableCrossRequestMiddleware.php 这个文件,没有此文件使用此命令创建 php artisan make:midd ...
- PHP编译安装时常见错误解决办法
转载自:http://www.bkjia.com/PHPjc/1008013.html This article is post on https://coderwall.com/p/ggmpfa c ...
- sass基础—属性嵌套以及跳出嵌套 @at-root
/*注意:定义的变量若是没有使用则不会编译到css文件中.*//*1)sass的局部变量*/$font:14px;//定义$font:12px !default; //没有default时是重新赋值, ...
- Error: Java VM internal error:Error Loading javai.dll
因为前几天的JMS测试,第一次写了loadrunner的脚本,感觉路一下子宽了. 知道loadrunner可以使用java写脚本,今天就试了一下,遇到了两个第一次写Java Vuser脚本普遍都会遇到 ...
- C++ Primer 笔记——const 限定符
1.因为const对象一旦创建后其值就不能再改变,所以const对象必须初始化. 2.默认情况下const对象只在文件内有效,如果想在多个文件之间共享const对象,必须在变量的定义之前添加exter ...
- 【C++ Primer | 07】常用算法
第一部分 常用泛型算法: find(beg, end, val); equal(beg1, end1, beg2); fill(beg, end, val); fill_n(beg, cnt, val ...
- C#异常断电后重新启动项目出现配置未初始化错误
转到如截图中所示路径,将其下的数据删掉,就可以启动了.