<题目链接>

题目大意:

有N个城市,这些城市之间有M条有向边,每条边有权值,能够选择K条边 边权置为0,求1到N的最短距离。

解题分析:

分层图最短路模板题,将该图看成 K+1 层图,然后具体解析见代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define INF 0x7ffffffffff;
;
;
typedef long long ll;

int n,m,k,tot,cnt;
int head[M];
];
struct EDGE{
    int to;
    int next;
    ll val;
}edge[M<<];
struct NODE{
    int loc,cal;  //loc代表该点的标号,cal代表该点所在的层数,这两个变量可以确定分层图中所有点的位置
    ll dist;
    bool operator <(const NODE &tmp)const{
        return dist>tmp.dist;
    }
    NODE(,,ll w=){
        loc=a,cal=b,dist=w;
    }
}d[N][];
void init(){
    cnt=;
    memset(head,-,sizeof(head));
}
void add(int u,int v,int w){
    edge[++cnt].to=v,edge[cnt].val=w;
    edge[cnt].next=head[u],head[u]=cnt;
}
void dij(){
    memset(vis,false,sizeof(vis));
    ;i<=n;i++){
        ;j<=k;j++){
            d[i][j].dist=INF;        //将所有点到起点的距离初始化为无穷大
        }
    }
    d[][].dist=;
    priority_queue<NODE>q;
    q.push(NODE(,,d[][].dist));
    while(!q.empty()){
        NODE now=q.top();
        q.pop();
        int tmp1=now.loc,tmp2=now.cal;
        if(vis[tmp1][tmp2])continue;
        vis[tmp1][tmp2]=true;
        for(int i=head[tmp1];~i;i=edge[i].next){
            int v=edge[i].to;
            ll cost=edge[i].val;
            if(d[v][tmp2].dist>d[tmp1][tmp2].dist+cost){     //在同一层中进行普通的松弛操作,表示当前道路的权值不用置为0
                d[v][tmp2].dist=d[tmp1][tmp2].dist+cost;
                q.push(NODE(v,tmp2,d[v][tmp2].dist));
            }
            <=k&&d[v][tmp2+].dist>d[tmp1][tmp2].dist){  //没有加上cost,代表 tmp1-->v 这段路的权值置为0
                d[v][tmp2+].dist=d[tmp1][tmp2].dist;
                q.push(NODE(v,tmp2+,d[v][tmp2+].dist));
            }
        }
    }
}
int main(){
    int T;scanf("%d",&T);
    while(T--){
        init();
        scanf("%d%d%d",&n,&m,&k);
        ;i<=m;i++){
            int u,v;ll w;
            scanf("%d%d%lld",&u,&v,&w);
            add(u,v,w);
        }
        dij();
        ll mn=INF;
        ;i<=k;i++){          //在所有层中选取最短的情况
            mn=min(mn,d[n][i].dist);
        }
        printf("%lld\n",mn);
    }
    ;
}

2018-09-12

ACM-ICPC 2018 南京赛区网络预赛 L 【分层图最短路】的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze

    262144K   There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...

  2. ACM-ICPC 2018 南京赛区网络预赛 L题(分层最短路)

    题目链接:https://nanti.jisuanke.com/t/31001 题目大意:给出一个含有n个点m条边的带权有向图,求1号顶点到n号顶点的最短路,可以使<=k条任意边的权值变为0. ...

  3. ACM-ICPC 2018 南京赛区网络预赛 L题(分层图,堆优化)

    题目链接: https://nanti.jisuanke.com/t/31001 超时代码: #include<bits/stdc++.h> using namespace std; # ...

  4. ACM-ICPC 2018 南京赛区网络预赛 L.Magical Girl Haze(分层最短路)

    There are N cities in the country, and M directional roads from u to v(1≤u,v≤n). Every road has a di ...

  5. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze 最短路+分层图

    类似题解 There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v(1≤u, ...

  6. ACM-ICPC 2018 南京赛区网络预赛 - L Magical Girl Haze (分层迪杰斯特拉)

    题意:N个点,M条带权有向边,求可以免费K条边权值的情况下,从点1到点N的最短路. 分析:K<=10,用dist[i][j]表示从源点出发到点i,免费j条边的最小花费.在迪杰斯特拉的dfs过程中 ...

  7. ACM-ICPC 2018 南京赛区网络预赛 L && BZOJ 2763 分层最短路

    https://nanti.jisuanke.com/t/31001 题意 可以把k条边的权值变为0,求s到t的最短路 解析  分层最短路  我们建立k+1层图 层与层之间边权为0,i 向 i+1层转 ...

  8. 【ACM-ICPC 2018 南京赛区网络预赛 L】Magical Girl Haze

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 定义dis[i][j]表示到达i这个点. 用掉了j次去除边的机会的最短路. dis[1][0]= 0; 在写松弛条件的时候. 如果用 ...

  9. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze (分层dijkstra)

    There are NN cities in the country, and MMdirectional roads from uu to v(1\le u, v\le n)v(1≤u,v≤n). ...

随机推荐

  1. Confluence 6 关于嵌入的 H2 数据库

    你的 Confluence 安装中包含有嵌入的 H2 数据库,能够让你试用 Confluence 而不需要安装任何的外部数据库.H2 数据库仅仅用于你对 Confluence 进行评估.在你将 Con ...

  2. 修改MongoDB密码

    修改MongoDB密码 禁用管理员(root)密码 1.找到配置文件mongod.conf,并进入 vim /etc/mongod.conf 2.禁用管理员(root)密码 找到: security: ...

  3. 移动端touchstart,touchmove,touchend

    近段时间使用html5开发一个公司内部应用,而触摸事件必然是移动应用中所必须的,刚开始以为移动设备上或许也会支持鼠标事件,原来是不支持的,好在webkit内核的移动浏览器支持touch事件,并且打包成 ...

  4. vue之$forceUpdate

    由于一些嵌套特别深的数据,导致数据更新了.UI没有更新(连深度监听都没有监听到) this.$forceUpdate();

  5. Java之动手动脑(三)

    日期:2018.10.12 星期五 博客期:017 这次留了两个动手动脑作业!我需要一个一个来说!先说第一个吧! Part 1 :随机生成1000个随机数 代码: //以下为 RandomMaker. ...

  6. django 中的闪现

    导包 from django.contrib import messages #输出格式 messages.success(request,'不能为空') #前端页面的写法 {%if messages ...

  7. laravel 获取当前月,当前星期,当天起始时间方法

    获取当前月起始时间: 1. $time=time(); $start=date('Y-m-01',$time);//获取指定月份的第一天 $end=date('Y-m-t',$time); //获取指 ...

  8. poj2728 生成树01分数规划 (二分答案)

    给定整数序列a,b,求出下式的最大值 sum{ai*xi}/sum{bi*xi},xi=0|1 通俗来说,就是选出一些整数对(ai,bi),使得选出的a之和与选出的b之和商最大化 二分答案L,即选出的 ...

  9. mysql 文件导入

    load data infile 文件路径 into table 表 fields terminated by ',' lines terminated '\n'

  10. vue指令问题

    挂载点:最外层标签就是vue实例的挂载点,即id或者类对应的 dom节点 模板:指挂载点内部的内容,在实例里使用template标签来构 建 h1标签放在body里面不使用 “template”是一样 ...