<题目链接>

题目大意:

给定一棵树,树上的点有0,1,2三中情况,0代表该点无色。现在需要你将这棵树割掉一些边,使得割掉每条边分割成的两部分均最多只含有一种颜色的点,即分割后的两部分不能1,2点夹杂(0的点数可以任意),问你最多能有几条这样的割点。

解题分析:

dfs求解出所有点以自己为根的子树 i 中1,2,节点的个数num1,num2,然后根据母树与子树之间的num1,num2值做差,能够得到 i 的另一部分的1,2,节点个数,然后再判断这两部分是否符合条件即可。

 #include <bits/stdc++.h>
using namespace std; #define N int(3e5+7)
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define pb push_back
int n;
int col[N],num1[N],num2[N];
vector<int>G[N]; void dfs(int u,int pre){
if(col[u]==)num1[u]=;
if(col[u]==)num2[u]=;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==pre)continue;
dfs(v,u);
num1[u]+=num1[v],num2[u]+=num2[v]; //得到每个以u为根的子树的1、2节点的个数
}
} int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&col[i]);
for(int i=;i<n;i++){
int u,v;scanf("%d%d",&u,&v);
G[u].pb(v);G[v].pb(u);
}
dfs(,-);
int ans=;
for(int i=;i<=n;i++){ //以1节点为整棵树的根节点
int x=num1[]-num1[i];
int y=num2[]-num2[i];
if(num1[i]&&num2[i])continue; //如果以i为根的子树含有两种颜色,它与它pre节点的边即使断开,也不符合
else if(x==||y==)ans++; //在上一句的情况下,如果整棵树以i为根的1、2节点个数有一个为0,那么将i与其pre节点之间的边断开成的两部分是符合条件的
}
printf("%d\n",ans);
}

2019-02-22

Codeforces 1118F1 Tree Cutting (Easy Version) (简单树形DP)的更多相关文章

  1. Codeforces 1118 F2. Tree Cutting (Hard Version) 优先队列+树形dp

    题目要求将树分为k个部分,并且每种颜色恰好在同一个部分内,问有多少种方案. 第一步显然我们需要知道哪些点一定是要在一个部分内的,也就是说要求每一个最小的将所有颜色i的点连通的子树. 这一步我们可以将所 ...

  2. Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)

    https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...

  3. Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】

    任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...

  4. Codeforces 1606F - Tree Queries(虚树+树形 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 显然我们选择删除的点连同 \(u\) 会形成一个连通块,否则我们如果选择不删除不与 \(u\) 在同一连通块中的点,答案一定更优. 注意到 ...

  5. hdu 5909 Tree Cutting——点分治(树形DP转为序列DP)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治的话,每次要做一次树形DP:但时间应该是 siz*m2 的.可以用 FWT 变成 siz*ml ...

  6. CodeForces 1118F2. Tree Cutting (Hard Version)

    题目简述:给定$n \leq 3 \times 10^5$个节点的树,其中一部分节点被染色,一共有$k$种不同的颜色.求将树划分成 $k$ 个不相交的部分的方案数,使得每个部分中除了未染色的节点以外的 ...

  7. Codeforces 1092F Tree with Maximum Cost(树形DP)

    题目链接:Tree with Maximum Cost 题意:给定一棵树,树上每个顶点都有属性值ai,树的边权为1,求$\sum\limits_{i = 1}^{n} dist(i, v) \cdot ...

  8. Tree Cutting POJ - 2378 (树形DP)

    题目链接:POJ - 2378 题目大意:给你n个点,然后问你这n个点中 ,去除哪些点能够使得剩下的图中最大的连通块中点的个数不超过n/2. 具体思路:第一遍dfs记录每一个点代表的子树大小,第二遍d ...

  9. BZOJ 3391 [Usaco2004 Dec]Tree Cutting网络破坏(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3391 [题目大意] 给定一棵树,求分支size均不大于一半点数的点 [题解] 递归的同 ...

随机推荐

  1. python的学习笔记

    1逻辑运算符不理解 2 在交互模式中,最后被输出的表达式结果被赋值给变量 _ .例如: >>> tax = 12.5 / 100 >>> price = 100.5 ...

  2. Swift 学习- 08 -- 闭包

    // 闭包是自包含的函数代码块, 可以在代码中被传递和使用, swift 中的闭包 与 C语言 和 OC 中的代码块 (blocks) 以及其他一些编程语言中的匿名函数比较类似 // 闭包可以捕获和存 ...

  3. 实用的sublime插件集合 – sublime推荐必备插件

    Package Control 功能:安装包管理 简介:sublime插件控制台,提供添加.删除.禁用.查找插件等功能 使用:https://sublime.wbond.net/installatio ...

  4. java多线程快速入门(十八)

    Lock锁是JDK1.5之后推出的并发包里面的关键字(注意捕获异常,释放锁) Lock与synchronized的区别 Lock锁可以人为的释放锁(相当于汽车中的手动挡) synchronized当线 ...

  5. py4j汉语转拼音多音字处理

    先看下效果 一 .布局 <!-- 上面的搜索框 --> <com.example.editablealphalist.widgget.ClearEditText android:id ...

  6. django----多对多数据添加

    class UserInfo(models.Model): """ 用户表:既有班主任也有老师 """ username = models. ...

  7. easyui组件window拖动时超过浏览器顶部则无法拖回

    项目研发过程中遇到一个问题,easyui的window可以随意拖动或者放大缩小,但是鼠标只有放在“header”上面时鼠标箭头才会变成四个方向的箭头,也就是只有在这时才能拖动窗口:但是当拖动的窗口超过 ...

  8. jenkins+git+maven 增量部署思路以及相关脚本

    之前通过jenkins+Git+maven这种方式打war包然后scp到测试环境使用,但是现在项目组要求打增量包,即只部署修改的文件和配置文件. 核心问题:如何获取到变动的文件??? 前置条件:初始化 ...

  9. file按钮美化成图片(纯HTML+CSS)

    效果图: 代码实现: html: <div> <h2>上传头像</h2> <p class="fs18">(请上传200X200px ...

  10. WPF 对控件进行截图且不丢失范围(转载)

    原文:Taking WPF “Screenshots” I was recently working on a Surface project at Microsoft (that will be s ...